login
Coordination sequence for C_36 lattice.
1

%I #20 Aug 12 2018 16:14:24

%S 1,2592,1121472,194986080,18300435840,1080041397408,44042615547456,

%T 1323529602867936,30721376739859200,570951048018417440,

%U 8740606046237286336,112789007191042473312,1250374850905568180352

%N Coordination sequence for C_36 lattice.

%H Seiichi Manyama, <a href="/A035773/b035773.txt">Table of n, a(n) for n = 0..10000</a>

%H R. Bacher, P. de la Harpe and B. Venkov, <a href="http://dx.doi.org/10.1016/S0764-4442(97)83542-2">Séries de croissance et séries d'Ehrhart associées aux réseaux de racines</a>, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.

%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).

%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.

%F a(n) = [x^(2n)] ((1+x)/(1-x))^36.

%p seq(coeff(series(((1+x)/(1-x))^36, x,n+1),x,n),n=0..30,2); # _Muniru A Asiru_, Aug 12 2018

%Y Cf. A035731.

%K nonn,easy

%O 0,2

%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

%E Recomputed by _N. J. A. Sloane_, Nov 25 1998