Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jun 30 2018 19:44:44
%S 1,200,6800,97880,822560,4780008,21278640,77548920,242080320,
%T 668274440,1669752016,3842321560,8251811680,16711687720,32179616240,
%U 59307908024,105189061760,180344446280,300011499280,485792684760,767737840032,1186940456040,1798737871920
%N Coordination sequence for C_10 lattice.
%H Seiichi Manyama, <a href="/A035747/b035747.txt">Table of n, a(n) for n = 0..10000</a>
%H R. Bacher, P. de la Harpe and B. Venkov, <a href="https://doi.org/10.5802/aif.1689">Séries de croissance et séries d'Ehrhart associées aux réseaux de racines</a>, Annales de l'institut Fourier, Tome 49 (1999) no. 3, pp. 727-762.
%H R. Bacher, P. de la Harpe and B. Venkov, <a href="https://doi.org/10.1016/S0764-4442(97)83542-2">Séries de croissance et séries d'Ehrhart associées aux réseaux de racines</a>, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
%H J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1098/rspa.1997.0126">Low-Dimensional Lattices VII: Coordination Sequences</a>, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%F a(n) = [x^(2n)] ((1+x)/(1-x))^10.
%F a(n) = A008420(2*n). - _Seiichi Manyama_, Jun 08 2018
%Y Cf. A008420.
%K nonn,easy
%O 0,2
%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
%E Recomputed by _N. J. A. Sloane_, Nov 25 1998