login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Coordination sequence for 25-dimensional cubic lattice.
1

%I #21 Aug 21 2018 08:23:05

%S 1,50,1250,20850,261250,2625010,22049250,159369650,1012597250,

%T 5749494450,29557550050,139056632050,604033925250,2440870708850,

%U 9235138753250,32899217125170,110890799925250,355178132537650

%N Coordination sequence for 25-dimensional cubic lattice.

%H Seiichi Manyama, <a href="/A035720/b035720.txt">Table of n, a(n) for n = 0..10000</a>

%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).

%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).

%F G.f.: ((1+x)/(1-x))^25.

%F n*a(n) = 50*a(n-1) + (n-2)*a(n-2) for n > 1. - _Seiichi Manyama_, Aug 21 2018

%K nonn,easy

%O 0,2

%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

%E Recomputed by _N. J. A. Sloane_, Nov 25 1998