Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 03 2025 09:27:58
%S 0,0,0,0,0,0,0,0,1,0,0,1,0,0,2,2,0,2,2,0,3,4,3,3,4,4,4,6,8,8,6,9,11,8,
%T 13,18,13,14,21,19,18,29,30,25,32,38,35,40,51,52,50,59,66,67,73,89,93,
%U 89,104,119,115,129,156,154,153,186,195,195,228,254,251,269,304,319
%N Number of partitions of n into parts 7k+3 and 7k+6 with at least one part of each type.
%H Robert Price, <a href="/A035668/b035668.txt">Table of n, a(n) for n = 1..1000</a>
%F G.f.: (-1 + 1/Product_{k>=0} (1 - x^(7*k + 3)))*(-1 + 1/Product_{k>=0} (1 - x^(7*k + 6))). - _Robert Price_, Aug 15 2020
%t nmax = 74; s1 = Range[0, nmax/7]*7 + 3; s2 = Range[0, nmax/7]*7 + 6;
%t Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 15 2020 *)
%t nmax = 74; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 15 2020 *)
%Y Cf. A035441-A035468, A035618-A035667, A035669-A035699.
%K nonn,changed
%O 1,15
%A _Olivier Gérard_