Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #88 Aug 06 2024 22:48:40
%S 1,4,28,232,2092,19864,195352,1970896,20275660,211823800,2240795848,
%T 23951289520,258255469816,2805534253552,30675477376432,
%U 337306474674592,3727578443380492,41376874025687032,461121792658583272,5157384457905440752,57869888433073055272,651266142688270063312,7349148747954997832272
%N G.f.: 3/(1 + 2*sqrt(1-12*x)).
%C Number of walks of length 2n on the 4-regular tree beginning and ending at some fixed vertex. The generating function for the corresponding sequence for the m-regular tree is 2*(m-1)/(m-2+m*sqrt(1-4*(m-1)*x)). When m=2 this reduces to the usual generating function for the central binomial coefficients. - _Paul Boddington_, Nov 11 2003
%C Main diagonal of the array A(0,j)=A(i,0)=1 for i,j>=0 and for i,j>=1 A(i,j)=min{A(i,j-1)+3*A(i-1,j); 3*A(i,j-1)+A(i-1,j)}. - _Benoit Cloitre_, Aug 05 2004
%C Hankel transform is A133461. - _Philippe Deléham_, Dec 01 2007
%C Also the number of length 2n words over an alphabet of size 4 that can be built by repeatedly inserting doublets into the initially empty word.
%C The sequence {b(n)}, where b(2n)=a(n), b(2n+1)=0, is the cogrowth function of the free group of rank 2. - _Murray Elder_, Jun 28 2016
%H Robert Israel, <a href="/A035610/b035610.txt">Table of n, a(n) for n = 0..837</a>
%H Murray Elder, <a href="/A035610/a035610.txt">Table of n, b(n) for n = 0..200</a>, where b(n) is mentioned in a comment above.
%H Libor Caha and Daniel Nagaj, <a href="https://arxiv.org/abs/1805.07168">The pair-flip model: a very entangled translationally invariant spin chain</a>, arXiv:1805.07168 [quant-ph], 2018.
%H M. Elder and A. Rechnitzer, T. Wong, <a href="http://arxiv.org/abs/1108.1596">On the cogrowth of Thompson's group F</a>, Groups, Complexity, Cryptology 4(2) (2012), 301-320.
%H Pakawut Jiradilok and Supanat Kamtue, <a href="https://arxiv.org/abs/2107.09876">Transportation Distance between Probability Measures on the Infinite Regular Tree</a>, arXiv:2107.09876 [math.CO], 2021.
%H J. Novak, <a href="http://arxiv.org/abs/1205.2097">Three lectures on free probability</a>, arXiv preprint arXiv:1205.2097, 2012. - _N. J. A. Sloane_, Oct 15 2012
%H Gregory Quenell, <a href="http://student.plattsburgh.edu/quenelgt/pubpdf/freeprod.pdf">Combinatorics of free product graphs</a>, Contemp. Math (1994) 257-281 (Eq. 19).
%H Ian M. Wanless, <a href="https://doi.org/10.1017/S0963548309990678">Counting Matchings and Tree-Like Walks in Regular Graphs</a>, Combinatorics, Probability and Computing (2010) 19, 463-480 (Lemma 3.1).
%F a(n) = Sum_{k=0..n} A039599(n,k)*3^(n-k). - _Philippe Deléham_, Aug 25 2007
%F From _Paul Barry_, Sep 15 2009: (Start)
%F G.f.: 1/(1-4x*c(3x)), c(x) the g.f. of A000108;
%F G.f.: 1/(1-4x/(1-3x/(1-3x/(1-3x/(1-3x/(1-.... (continued fraction);
%F G.f.: 1/(1-4x-12x^2/(1-6x-9x^2/(1-6x-9x^2/(1-6x-9x^2/(1-... (continued fraction).
%F Integral representation: a(n) = (2/Pi)*Integral_{x=0..12} x^n*sqrt(x*(12-x))/(16-x). (End)
%F a(0) = 1; a(n) = (4/n) * Sum_{j=0..n-1} C(2*n,j) * (n-j) * 3^j for n > 0.
%F a(n) = upper left term in M^n, M = an infinite square production matrix as follows:
%F 4, 4, 0, 0, 0, 0, ...
%F 3, 3, 3, 0, 0, 0, ...
%F 3, 3, 3, 3, 0, 0, ...
%F 3, 3, 3, 3, 3, 0, ...
%F 3, 3, 3, 3, 3, 3, ...
%F ...
%F - _Gary W. Adamson_, Jul 15 2011
%F D-finite with recurrence: n*a(n) + 2*(9-14*n)*a(n-1) + 96*(2*n-3)*a(n-2) = 0. - _R. J. Mathar_, Nov 14 2011
%F P-recurrence confirmed using differential equation (-96*x+10)*g(x) + (-192*x^2+28*x-1)*g'(x) - 6 = 0 satisfied by the generating function. - _Robert Israel_, Jul 06 2015
%F a(n) ~ 3*12^n/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Jun 29 2013
%F a(n) are special values of the hypergeometric function 2F1, in Maple notation: a(n) = 3*12^n*GAMMA(n+1/2)*hypergeom([1,n+1/2],[n+2],3/4)/(4*sqrt(Pi)*(n+1)!), n=0,1,... . - _Karol A. Penson_, Jul 06 2015
%e a(2)=28 because there are 4*4=16 walks whose second step is to return to the starting vertex and 4*3=12 walks whose second step is to move away from the starting vertex.
%p a:= n-> `if`(n=0, 1, 4/n*add(binomial(2*n, j) *(n-j)*3^j, j=0..n-1)):
%p seq(a(n), n=0..20);
%p # Alternative:
%p f:= gfun:-rectoproc({(-192*n-288)*a(n+1)+(28*n+66)*a(n+2)+(-n-3)*a(n+3)=0,a(0)=1,a(1)=4,a(2)=28},a(n),remember):
%p map(f, [$0..50]); # _Robert Israel_, Jul 06 2015
%t CoefficientList[ Series[3/(1 + 2Sqrt[1 - 12x]), {x, 0, 19}], x] (* _Robert G. Wilson v_, Nov 12 2003 *)
%o (PARI) x='x+O('x^66); Vec(3/(1+2*sqrt(1-12*x))) \\ _Joerg Arndt_, Sep 06 2014
%Y Cf. A089022.
%Y 4th column of A183135.
%K nonn
%O 0,2
%A _N. J. A. Sloane_
%E Edited by _Alois P. Heinz_, Jan 20 2011