Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 06 2023 21:13:05
%S 0,1,2,1,2,3,3,1,2,3,3,3,3,4,5,1,2,3,3,3,4,4,4,3,3,4,4,4,4,6,5,1,3,3,
%T 4,3,3,4,5,3,3,5,4,4,5,5,5,3,3,4,5,4,4,5,6,4,5,5,5,6,5,6,7,1,3,4,3,3,
%U 4,5,4,3,3,4,5,4,5,6,5,3,3,4,4,5,5,5,6,4,4,6,6,5,6,6,7,3,3,4,5,4,4,6,5,4,6,5,5,5,5,7,7
%N a(n) = A000120(n) + A001221(n) - 1.
%H Antti Karttunen, <a href="/A035531/b035531.txt">Table of n, a(n) for n = 1..65537</a> (first 1000 terms from G. C. Greubel)
%F G.f.: Sum a(n) x^n = Sum A000120(p)*x^p/(1-x^p), p = prime.
%p A035531 := proc(n)
%p A000120(n)+A001221(n)-1 ;
%p end proc:
%p seq(A035531(n),n=1..100) ; # _R. J. Mathar_, Mar 12 2018
%t Table[DigitCount[n, 2, 1] + PrimeNu[n] - 1, {n, 1, 100}] (* _G. C. Greubel_, Apr 24 2017 *)
%o (PARI) a(n) = hammingweight(n) + omega(n) - 1; \\ _Michel Marcus_, Apr 25 2017
%o (Python)
%o from sympy import primefactors
%o def a(n): return 0 if n<2 else bin(n)[2:].count("1") + len(primefactors(n)) - 1 # _Indranil Ghosh_, Apr 25 2017
%Y Cf. A000120, A001221.
%Y Cf. also A336149.
%K nonn,easy
%O 1,3
%A _Daniele Parisse_
%E More terms from _David W. Wilson_.