login
Zeckendorf expansion of n: repeatedly subtract the largest Fibonacci number you can until nothing remains.
7

%I #15 Sep 29 2018 18:43:28

%S 0,1,2,3,31,5,51,52,8,81,82,83,831,13,131,132,133,1331,135,1351,1352,

%T 21,211,212,213,2131,215,2151,2152,218,2181,2182,2183,21831,34,341,

%U 342,343,3431,345,3451,3452,348,3481,3482,3483,34831,3413,34131,34132

%N Zeckendorf expansion of n: repeatedly subtract the largest Fibonacci number you can until nothing remains.

%D Zeckendorf, E., Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

%H Reinhard Zumkeller, <a href="/A035514/b035514.txt">Table of n, a(n) for n = 0..10000</a>

%H N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>

%e 16 = 13 + 3, so a(16)=13_3 => 133.

%o (Haskell)

%o a035514 n = a035514_list !! (n-1)

%o a035514_list = map (read . concatMap show) a035516_tabf :: [Integer]

%o -- _Reinhard Zumkeller_, Mar 10 2013

%Y Cf. A035517, A035515, A035516.

%K nonn,easy,base

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Dec 13 1999