login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Card on top of deck at n-th stage of R. K. Guy's shuffling problem.
21

%I #26 Aug 15 2022 10:27:38

%S 1,2,3,1,6,5,9,1,4,2,16,10,12,14,23,16,18,20,17,27,30,33,38,10,14,37,

%T 32,6,11,19,53,37,25,21,12,34,38,8,50,48,46,14,18,23,47,53,84,52,31,

%U 49,1,51,91,61,42,79,4,29,6,49,26,23,115,4,70,93,109,11,16,19,49,18,124,97,70,10,134,111,7,38,14,79,11,129

%N Card on top of deck at n-th stage of R. K. Guy's shuffling problem.

%C At n-th step, pick up top n cards and interlace them with the next n.

%C Here is the deck after steps 0,1,2,3,4,5:

%C 1,2,3,4,5,6,7,...

%C 2,1,3,4,5,6,7,...

%C 3,2,4,1,5,6,7,...

%C 1,3,5,2,6,4,7,8,9,...

%C 6,1,4,3,7,5,8,2,9,10,...

%C It is conjectured that eventually every number appears on top of the deck.

%C See A035491 for (the relevant part of) the deck after the n-th step. - _M. F. Hasler_, Aug 13 2022

%D D. Gale, Mathematical Entertainments: "Careful Card-Shuffling and Cutting Can Create Chaos," The Mathematical Intelligencer, vol. 14, no. 1, 1992, pages 54-56.

%D D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998.

%H Lars Blomberg, <a href="/A035485/b035485.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PerfectShuffle.html">Perfect Shuffle.</a>

%F a(n) = A035491(n,1), i.e., the first element of the n-th row of that table, for all n > 0. - _M. F. Hasler_, Aug 13 2022

%o (Python)

%o def aupton(terms):

%o alst, deck = [1], list(range(1, 2*terms+1))

%o for n in range(1, terms+1):

%o first, next = deck[:n], deck[n:2*n]

%o deck[0:2*n:2] = next

%o deck[1:2*n:2] = first

%o alst.append(deck[0])

%o return alst

%o print(aupton(83)) # _Michael S. Branicky_, Feb 01 2021

%o (PARI) A035485(n)=A035491_row(n+!n)[1]-!n \\ _M. F. Hasler_, Aug 13 2022

%Y See A035491 for the array, also A035490, A035492.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_, _Clark Kimberling_

%E More terms from _Jud McCranie_