login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts 8k+5 or 8k+6.
1

%I #11 Aug 04 2020 21:33:28

%S 0,0,0,0,1,1,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,4,4,4,4,5,5,6,6,7,

%T 8,8,8,9,10,12,12,14,14,15,16,17,19,22,22,24,25,27,29,32,34,38,39,42,

%U 44,48,51,55,59,64,67,72,75,81,87,94,99,107,111,119,126,135,144,154

%N Number of partitions of n into parts 8k+5 or 8k+6.

%H Robert Price, <a href="/A035466/b035466.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) ~ exp(Pi*sqrt(n/6)) * Gamma(5/8) * Gamma(3/4) / (4 * 2^(3/16) * 3^(7/16) * Pi^(5/8) * n^(15/16)). - _Vaclav Kotesovec_, Aug 27 2015

%t nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(8k+5))*(1 - x^(8k+6))), {k, 0, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Aug 27 2015 *)

%t nmax = 60; kmax = nmax/8;

%t s = Flatten[{Range[0, kmax]*8 + 5}~Join~{Range[0, kmax]*8 + 6}];

%t Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 1, nmax}] (* _Robert Price_, Aug 04 2020 *)

%K nonn

%O 1,18

%A _Olivier Gérard_