login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of partitions of n into parts 7k+3 or 7k+6.
0

%I #8 Aug 26 2015 06:59:26

%S 0,0,1,0,0,2,0,0,2,1,0,3,2,0,3,3,1,4,4,3,4,5,5,6,6,8,8,7,10,13,9,13,

%T 17,13,15,23,19,19,28,28,24,34,37,34,40,48,46,50,58,63,64,71,80,85,85,

%U 100,110,108,120,142,137,146,174,178,179,212,224,226,252,280,285,307

%N Number of partitions of n into parts 7k+3 or 7k+6.

%F a(n) ~ exp(2*Pi*sqrt(n/21)) * Gamma(3/7) * Gamma(6/7) / (4 * 3^(11/28) * 7^(3/28) * Pi^(5/7) * n^(25/28)). - _Vaclav Kotesovec_, Aug 26 2015

%t nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(7k+3))*(1 - x^(7k+6))), {k, 0, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Aug 26 2015 *)

%K nonn

%O 1,6

%A _Olivier GĂ©rard_