login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of partitions of n into parts 7k or 7k+5.
0

%I #8 Aug 27 2015 06:11:52

%S 0,0,0,0,1,0,1,0,0,1,0,2,0,2,1,0,2,0,4,1,3,2,0,5,1,7,2,5,5,1,9,2,12,5,

%T 8,10,2,17,5,20,10,13,19,5,29,10,32,20,20,34,10,49,20,50,36,32,59,20,

%U 78,37,77,64,50,97,37,124,66,117,107,79,157,67,190,112,176,177,123

%N Number of partitions of n into parts 7k or 7k+5.

%F a(n) ~ exp(2*Pi*sqrt(n/21)) * 7^(3/28) * Gamma(5/7) / (4 * 3^(17/28) * Pi^(2/7) * n^(31/28)). - _Vaclav Kotesovec_, Aug 27 2015

%t nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(7k+7))*(1 - x^(7k+5))), {k, 0, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Aug 27 2015 *)

%K nonn

%O 1,12

%A _Olivier GĂ©rard_