login
A035352
Number of increasing rooted polygonal cacti with bridges (mixed Husimi trees) with n nodes.
1
1, 1, 3, 16, 122, 1203, 14518, 207061, 3406083, 63465271, 1320938774, 30371545338, 764447981599, 20904838435264, 617151430504113, 19561785238965715, 662583041367287249, 23882958184429006800, 912777131398463190802, 36868849734952579404745
OFFSET
1,3
COMMENTS
Limit n->infinity (a(n)/n!)^(1/n) = 2.168573... - Vaclav Kotesovec, Feb 28 2014
FORMULA
E.g.f. satisfies A'(x) = exp((2*A(x)-A(x)^2)/(2-2*A(x))).
MAPLE
Ap:= proc(n) option remember; local A, f; if n<=0 then f:=1 else A:= Int(Ap(n-1), x); f:= exp((2*A -A^2)/ (2-2*A)) fi; convert(series(f, x, n+1), polynom) end: a:= n-> coeff(series(Ap(n-1), x=0, n), x, n-1)*(n-1)!: seq(a(n), n=1..30); # Alois P. Heinz, Aug 20 2008
MATHEMATICA
Ap[n_] := Ap[n] = Module[{A, f}, If[n <= 0, f=1, A = Integrate[Ap[n-1], x]; f = Exp[(2*A-A^2)/(2-2*A)]]; Series[f, {x, 0, n+1}] // Normal]; a[n_] := SeriesCoefficient[Ap[n-1], {x, 0, n-1}]*(n-1)!; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Nov 15 1998
EXTENSIONS
a(18) corrected by Alois P. Heinz, Aug 20 2008
STATUS
approved