login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Concatenation of two or more consecutive positive integers.
12

%I #21 Dec 23 2021 07:40:23

%S 12,23,34,45,56,67,78,89,123,234,345,456,567,678,789,910,1011,1112,

%T 1213,1234,1314,1415,1516,1617,1718,1819,1920,2021,2122,2223,2324,

%U 2345,2425,2526,2627,2728,2829,2930,3031,3132,3233,3334,3435,3456,3536,3637,3738

%N Concatenation of two or more consecutive positive integers.

%H Paul Tek, <a href="/A035333/b035333.txt">Table of n, a(n) for n = 1..10000</a>

%o (Python)

%o import heapq

%o from itertools import islice

%o def agen():

%o c = 12

%o h = [(c, 1, 2)]

%o nextcount = 3

%o while True:

%o (v, s, l) = heapq.heappop(h)

%o yield v

%o if v >= c:

%o c = int(str(c) + str(nextcount))

%o heapq.heappush(h, (c, 1, nextcount))

%o nextcount += 1

%o l += 1; v = int(str(v)[len(str(s)):] + str(l)); s += 1

%o heapq.heappush(h, (v, s, l))

%o print(list(islice(agen(), 47))) # _Michael S. Branicky_, Dec 23 2021

%Y For concatenations of exactly k consecutive integers see A000027 (k=1), A127421 (k=2), A001703 (k=3), A279204 (k=4).

%Y See also A007908 for concatenation of 1 through n.

%Y For primes see A052087.

%Y All of A007908, A052087, A053067, A279610 are subsequences.

%K easy,nonn,base

%O 1,1

%A _Erich Friedman_

%E Edited by _Charles R Greathouse IV_, Apr 28 2010

%E Corrected by _Paul Tek_, Jun 08 2013