%I #18 Oct 04 2020 07:37:58
%S 1,264,8244,139520,1672290,15872256,126745880,884100096,5525046495,
%T 31498809600,166049246340,817866616320,3794952949854,16699329285120,
%U 70071039813240,281650911606784,1088671630120515,4060062852952320
%N Fourier coefficients of T_{10}.
%C T_{10} is the unique weight = -8 normalized meromorphic modular form for SL(2,Z) with all poles at infinity.
%D C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1980, pp. 249-268.
%H Seiichi Manyama, <a href="/A035315/b035315.txt">Table of n, a(n) for n = -1..1000</a>
%H Borcherds, Richard E., <a href="http://arXiv.org/abs/alg-geom/9609022">Automorphic forms with singularities on Grassmannians</a>, Invent. Math. 132 (1998), 491-562.
%F G.f.: G_4/Delta (in Siegel's notation.)
%F a(n) ~ exp(4*Pi*sqrt(n)) / (sqrt(2) * n^(19/4)). - _Vaclav Kotesovec_, Oct 04 2020
%e T_{10} = 1/q + 264 + 8244 q + ....
%o (PARI) {a(n)=if(n<-1, 0, n++; polcoeff( sum(k=1,n,240*sigma(k,3)*x^k,1+x*O(x^n))/eta(x+x*O(x^n))^24,n))} /* _Michael Somos_, Apr 12 2005 */
%K easy,nonn
%O -1,2
%A Barry Brent (barryb(AT)primenet.com)