login
Expansion of Sum_{n>=0} (q^n / Product_{k=1..n+5} (1 - q^k)).
8

%I #9 Aug 09 2017 02:56:09

%S 1,2,4,7,12,19,29,43,62,88,122,167,225,301,396,519,672,866,1105,1406,

%T 1773,2230,2785,3469,4295,5307,6521,7998,9765,11899,14442,17499,21126,

%U 25464,30597,36706,43911,52454

%N Expansion of Sum_{n>=0} (q^n / Product_{k=1..n+5} (1 - q^k)).

%p ZL :=[S, {S = Set(Cycle(Z),4 < card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=5..42); # _Zerinvary Lajos_, Mar 25 2008

%p B:=[S,{S = Set(Sequence(Z,1 <= card),card >=5)},unlabelled]: seq(combstruct[count](B, size=n), n=5..42); # _Zerinvary Lajos_, Mar 21 2009

%K nonn

%O 0,2

%A _N. J. A. Sloane_