|
|
A035229
|
|
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = 47.
|
|
4
|
|
|
1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 2, 0, 0, 0, 0, 5, 2, 2, 2, 0, 0, 4, 2, 0, 1, 0, 0, 0, 0, 0, 2, 6, 0, 4, 0, 3, 2, 4, 0, 0, 0, 0, 2, 6, 0, 4, 1, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 7, 0, 0, 2, 6, 0, 0, 0, 4, 0, 4, 0, 6, 0, 0, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{d|n} Kronecker(47, d).
Multiplicative with a(47^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(47, p) = -1 (p is in A038928), and a(p^e) = e+1 if Kronecker(47, p) = 1 (p is in A038927 \ {47}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(48+7*sqrt(47))/sqrt(47) = 1.331525560401... . (End)
|
|
MATHEMATICA
|
a[n_] := DivisorSum[n, KroneckerSymbol[47, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
|
|
PROG
|
(PARI) my(m = 47); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(47, d)); \\ Amiram Eldar, Nov 20 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,mult
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|