login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035229 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = 47. 4
1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 2, 0, 0, 0, 0, 5, 2, 2, 2, 0, 0, 4, 2, 0, 1, 0, 0, 0, 0, 0, 2, 6, 0, 4, 0, 3, 2, 4, 0, 0, 0, 0, 2, 6, 0, 4, 1, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 7, 0, 0, 2, 6, 0, 0, 0, 4, 0, 4, 0, 6, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(47, d).
Multiplicative with a(47^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(47, p) = -1 (p is in A038928), and a(p^e) = e+1 if Kronecker(47, p) = 1 (p is in A038927 \ {47}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(48+7*sqrt(47))/sqrt(47) = 1.331525560401... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[47, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
PROG
(PARI) my(m = 47); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(47, d)); \\ Amiram Eldar, Nov 20 2023
CROSSREFS
Sequence in context: A080024 A348223 A035199 * A348019 A285982 A261727
KEYWORD
nonn,easy,mult
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 08:45 EDT 2024. Contains 375904 sequences. (Running on oeis4.)