login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 45.
1

%I #9 Nov 20 2023 11:52:53

%S 1,0,1,1,1,0,0,0,1,0,2,1,0,0,1,1,0,0,2,1,0,0,0,0,1,0,1,0,2,0,2,0,2,0,

%T 0,1,0,0,0,0,2,0,0,2,1,0,0,1,1,0,0,0,0,0,2,0,2,0,2,1,2,0,0,1,0,0,0,0,

%U 0,0,2,0,0,0,1,2,0,0,2,1,1

%N Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 45.

%H Amiram Eldar, <a href="/A035227/b035227.txt">Table of n, a(n) for n = 1..10000</a>

%F From _Amiram Eldar_, Nov 20 2023: (Start)

%F a(n) = Sum_{d|n} Kronecker(45, d).

%F Multiplicative with a(p^e) = 1 if Kronecker(45, p) = 0 (p = 3 or 5), a(p^e) = (1+(-1)^e)/2 if Kronecker(45, p) = -1 (p is in A003631 \ {3}), and a(p^e) = e+1 if Kronecker(45, p) = 1 (p is in A045468).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8*log(phi)/(3*sqrt(5)) = 0.573878587952..., where phi is the golden ratio (A001622) . (End)

%t a[n_] := DivisorSum[n, KroneckerSymbol[45, #] &]; Array[a, 100] (* _Amiram Eldar_, Nov 20 2023 *)

%o (PARI) my(m = 45); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))

%o (PARI) a(n) = sumdiv(n, d, kronecker(45, d)); \\ _Amiram Eldar_, Nov 20 2023

%Y Cf. A001622, A003631, A045468.

%K nonn,easy,mult

%O 1,11

%A _N. J. A. Sloane_