Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Nov 16 2023 07:44:26
%S 1,1,1,1,0,1,2,1,1,0,0,1,2,2,0,1,0,1,2,0,2,0,0,1,1,2,1,2,0,0,2,1,0,0,
%T 0,1,2,2,2,0,0,2,2,0,0,0,0,1,3,1,0,2,0,1,0,2,2,0,0,0,2,2,2,1,0,0,2,0,
%U 0,0,0,1,2,2,1,2,0,2,2,0,1,0,0,2,0,2,0,0,0,0,4,0,2,0,0,1,2,3,0,1,0,0,2,2,0
%N a(n) = Sum_{d|n} Kronecker(-12, d) (= A134667(d)).
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%D J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.
%H G. C. Greubel, <a href="/A035178/b035178.txt">Table of n, a(n) for n = 1..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.
%F Moebius transform is period 6 sequence [ 1, 0, 0, 0, -1, 0, ...]. - _Michael Somos_, Feb 14 2006
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u2) * (u1 - u2 - u3 + u6) - (u2 -u6) * (1 + 3*u6). - _Michael Somos_, May 29 2005
%F Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker( -12, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker( -12, p) * p^-s)). - _Michael Somos_, Jun 24 2011
%F a(n) is multiplicative with a(p^e) = 1 if p=2 or p=3, a(p^e) = 1+e if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
%F G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k) + x^(4*k)) = Sum_{k>=0} x^(6*k + 1) / (1 - x^(6*k + 1)) - x^(6*k + 5) / (1 - x^(6*k + 5)). - _Michael Somos_, Feb 14 2006
%F a(n) = |A093829(n)| = -(-1)^n * A137608(n) = a(2*n) = a(3*n). a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
%F From _Michael Somos_, Aug 11 2009: (Start)
%F 3 * a(n) = A107760(n) unless n=0. a(2*n + 1) = A033762(n). a(3*n + 1) = A033687(n). a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n).
%F a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n). a(8*n + 7) = 2 * A112608(n). a(12*n + 1) A123884(n). a(12*n + 7) = 2 * A121361(n).
%F a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A131963(n). a(24*n + 19) = 2 * A131964(n). (End)
%F Expansion of (psi(q)^3 / psi(q^3) - 1) / 3 in powers of q where psi() is a Ramanujan theta function. - _Michael Somos_, Aug 04 2015
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - _Amiram Eldar_, Nov 16 2023
%e G.f. = q + q^2 + q^3 + q^4 + q^6 + 2*q^7 + q^8 + q^9 + q^12 + 2*q^13 + 2*q^14 + ...
%t a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -12, d], { d, Divisors[ n]}]]; (* _Michael Somos_, Jun 24 2011 *)
%t a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, 1, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1 ] & @@@ FactorInteger@n)]; (* _Michael Somos_, Aug 04 2015 *)
%t a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)]^3 / EllipticTheta[ 2, 0, q^(3/2)] - 4) / 12, {q, 0, n}]; (* _Michael Somos_, Aug 04 2015 *)
%t a[n_] := DivisorSum[n, KroneckerSymbol[-12, #]&]; Array[a, 105] (* _Jean-François Alcover_, Dec 01 2015 *)
%o (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -12, d)))}; /* _Michael Somos_, Apr 18 2004 */
%o (PARI) {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -12, p) * X))) [n])}; /* _Michael Somos_, Jun 24 2011 */
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^2 + A)^6 / (eta(x^6 + A)^2 * eta(x + A)^3) - 1) / 3, n))}; /* _Michael Somos_, Aug 11 2009 */
%o (PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%6==5, 1-e%2, 1+e)))}; /* _Michael Somos_, Aug 04 2015 */
%o (Magma) A := Basis( ModularForms( Gamma1(6), 1), 88); B<q> := (A[1] - 1) / 3 + A[2]; B; /* _Michael Somos_, Aug 04 2015 */
%Y Cf. A033687, A033762, A093829, A093766, A097197, A107760, A112604, A112605.
%Y Cf. A112606, A112607, A112608, A121361, A123884, A131961, A131962.
%Y Cf. A131963, A131964, A137608.
%Y Cf. A000122, A000700, A010054, A121373.
%K nonn,easy,mult
%O 1,7
%A _N. J. A. Sloane_
%E Definition edited by _Michael Somos_, Aug 11 2009