login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of labeled polygonal cacti (Husimi graphs) with n nodes.
4

%I #22 Sep 06 2023 22:41:36

%S 1,1,0,1,3,27,240,2985,42840,731745,14243040,313570845,7683984000,

%T 207685374435,6135743053440,196754537704725,6805907485977600,

%U 252620143716765825,10015402456976716800,422410127508300756825,18884777200534941696000

%N Number of labeled polygonal cacti (Husimi graphs) with n nodes.

%C A Husimi tree is a connected graph in which no line lies on more than one cycle [Harary, 1953]. - _Jonathan Vos Post_, Mar 12 2010

%D F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 301.

%D F. Harary and R. Z. Norman "The Dissimilarity Characteristic of Husimi Trees" Annals of Mathematics, 58 1953, pp. 134-141.

%D F. Harary and E. M. Palmer, Graphical Enumeration, p. 71.

%D F. Harary and G. E. Uhlenbeck "On the Number of Husimi Trees" Proc. Nat. Acad. Sci. USA vol. 39. pp. 315-322, 1953.

%D F. Harary, G. Uhlenbeck (1953), "On the number of Husimi trees, I", Proceedings of the National Academy of Sciences 39: 315-322. - From _Jonathan Vos Post_, Mar 12 2010

%H Alois P. Heinz, <a href="/A035088/b035088.txt">Table of n, a(n) for n = 0..400</a>

%H <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%F a(n) = A035087(n)/n, n > 0.

%t max = 20; s = 1+InverseSeries[Series[E^(x^2/(2*(x-1)))*x, {x, 0, max}], x]; a[n_] := SeriesCoefficient[s, n]*(n-1)!; a[0]=1; Table[a[n], {n, 0, max}] (* _Jean-François Alcover_, Feb 27 2016, after _Vaclav Kotesovec_ at A035087 *)

%Y Cf. A035082, A035083, A035084, A035085, A035086, A035087.

%K nonn,nice

%O 0,5

%A _Christian G. Bower_, Nov 15 1998