Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Dec 20 2022 03:50:02
%S 1,15,345,10695,417105,19603935,1078216425,67927634775,4822862069025,
%T 381006103452975,33147531000408825,3149015445038838375,
%U 324348590839000352625,36002693583129039141375,4284320536392355657823625,544108708121829168543600375,73454675596446937753386050625
%N One seventh of octo-factorial numbers.
%H G. C. Greubel, <a href="/A034975/b034975.txt">Table of n, a(n) for n = 1..325</a>
%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>.
%F 7*a(n) = (8*n-1)!^8 = Product_{j=1..n} (8*j-1) = (8*n)!/((2*n)!*2^(6*n)*3^2*5 * A045755(n)*A007696(n)*A034909(n)*A034911(n)*A034176(n)).
%F E.g.f.: (-1+(1-8*x)^(-7/8))/7.
%F G.f.: x/(1-15*x/(1-8*x/(1-23*x/(1-16*x/(1-31*x/(1-24*x/(1-39*x/(1-32*x/(1-... (continued fraction). - _Philippe Deléham_, Jan 07 2012
%F a(n) = (1/7) * 8^n * Pochhammer(n, 7/8). - _G. C. Greubel_, Oct 21 2022
%F From _Amiram Eldar_, Dec 20 2022: (Start)
%F a(n) = A049210(n)/7.
%F Sum_{n>=1} 1/a(n) = 7*(e/8)^(1/8)*(Gamma(7/8) - Gamma(7/8, 1/8)). (End)
%t Table[8^n*Pochhammer[7/8, n]/7, {n, 40}] (* _G. C. Greubel_, Oct 21 2022 *)
%o (Magma) [n le 1 select 1 else (8*n-1)*Self(n-1): n in [1..40]]; // _G. C. Greubel_, Oct 21 2022
%o (SageMath) [8^n*rising_factorial(7/8,n)/7 for n in range(1,40)] # _G. C. Greubel_, Oct 21 2022
%Y Cf. A007696, A034176, A034908, A034909, A034910, A034911, A034912, A034976, A045755, A049210.
%K easy,nonn
%O 1,2
%A _Wolfdieter Lang_