Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Mar 12 2021 22:24:42
%S 1,2,2,4,1,-2,2,-4,-2,2,-8,-4,-1,-4,-6,0,-4,-8,10,-4,-6,6,2,8,9,-4,-6,
%T 4,4,14,2,4,4,10,8,-12,14,-2,8,8,-11,-6,-4,12,-2,-8,0,-4,-2,-2,-6,4,
%U -16,-2,-6,-20,2,8,2,-8,-7,-12,-12,-16,12,-6,-8,8,10,-10,-16,4,-12,18,18,-4,-2,0,18,12,-16,2,-8,20,-9,2,18,-4,28,-6,2
%N Expansion of eta(8z)*eta(16z)*theta_3(2z)*theta_3(4z).
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A034951/b034951.txt">Table of n, a(n) for n = 0..1000</a>
%H Johann Cigler, <a href="https://homepage.univie.ac.at/johann.cigler/preprints/losanitsch3.pdf">Some Pascal-like triangles</a>, 2018.
%H Ken Ono and Christopher Skinner, <a href="http://www.jstor.org/stable/121015">Fourier Coefficients of Half-Integral Weight Modular Forms Modulo l</a>, Ann. Math., 147 (1998), 453-470.
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F G.f.: Product_{k>0} (1 - x^(2*k)) * (1 + x^k)^2 * (1 - x^(4*k))^3 / (1 + x^(4*k)). - _Michael Somos_, Sep 21 2005
%F Euler transform of period 8 sequence [2, -1, 2, -5, 2, -1, 2, -4, ...]. - _Michael Somos_, Sep 21 2005
%F Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^4)^4) / (eta(q)^2 * eta(q^8)) in powers of q. - _Michael Somos_, Sep 21 2005
%F Expansion of phi(x) * f(x^2)^2 * f(-x^8) = psi(x)^2 * f(x^2) * f(-x^4) = psi(x)^2 * psi(-x^2) * phi(x^2) = psi(x^2)^2 * phi(x) * phi(-x^4) = psi(x)^2 * psi(x^2) * phi(-x^4) in powers of x where phi(), psi(), f() are Ramanujan theta functions. - _Michael Somos_, Jul 07 2014
%F a(31*n + 15) = 0 unless n == 15 (mod 31). a(961*n + 480) = -31 * a(n). - _Michael Somos_, Jul 07 2014
%e G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + x^4 - 2*x^5 + 2*x^6 - 4*x^7 - 2*x^8 + ...
%e G.f. = q + 2*q^3 + 2*q^5 + 4*q^7 + q^9 - 2*q^11 + 2*q^13 - 4*q^15 - 2*q^17 + ...
%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x]^2 EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^4] / (4 x^(1/2)), {x, 0, n}];
%t QP = QPochhammer; s = (QP[q^2]^3*QP[q^4]^4)/(QP[q]^2*QP[q^8]) + O[q]^90; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 14 2015, adapted from PARI *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^4 / (eta(x + A)^2 * eta(x^8 + A)), n))}; /* _Michael Somos_, Sep 21 2005 */
%K sign
%O 0,2
%A _N. J. A. Sloane_