%I #17 Nov 06 2017 04:32:51
%S 0,0,0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,1,0,1,1,1,2,1,3,1,4,1,5,1,6,
%T 1,7,1,8,1,9,2,0,2,1,2,2,2,3,2,4,2,5,2,6,2,7,2,8,2,9,3,0,3,1,3,2,3,3,
%U 3,4,3,5,3,6,3,7,3,8,3,9,4,0,4,1,4,2,4,3,4,4,4,5,4,6,4,7,4,8,4
%N Decimal expansion of 1/9801.
%C Group the terms 2 by 2 to get (except 98): 00, 01, 02, 03, ..., 97, 99, then repeat. - _Michel Marcus_, Mar 17 2013
%H G. C. Greubel, <a href="/A034948/b034948.txt">Table of n, a(n) for n = 0..5000</a>
%H StackExchange, <a href="http://math.stackexchange.com/questions/102682/what-is-special-about-the-numbers-9801-998001-99980001">What is special about the numbers 9801, 998001, 99980001 ..?</a>
%F Equals 1/9801 = 1/99^2.
%t Join[{0,0,0}, RealDigits[1/(9801), 10, 50][[1]]] (* _G. C. Greube_, Nov 05 2017 *)
%o (PARI) \p 200
%o 1/9801.0 \\ _Michel Marcus_, Mar 17 2013
%Y Cf. A036663, A036664, A036665.
%K nonn,cons
%O 0,6
%A _Marvin Ray Burns_