login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n!*(2*n-5)/2.
1

%I #27 Sep 08 2022 08:44:52

%S 3,36,300,2520,22680,221760,2358720,27216000,339292800,4550515200,

%T 65383718400,1002550348800,16345929600000,282457663488000,

%U 5157467707392000,99236792438784000,2007144156745728000,42575785143091200000,945182430176624640000,21918014191663349760000

%N a(n) = n!*(2*n-5)/2.

%H Vincenzo Librandi, <a href="/A034860/b034860.txt">Table of n, a(n) for n = 3..200</a>

%H J. Riordan, <a href="http://dx.doi.org/10.1147/rd.45.0473">Enumeration of trees by height and diameter</a>, IBM J. Res. Dev. 4 (1960), 473-478

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%F (-2*n+7)*a(n) + n*(2*n-5)*a(n-1) = 0. - _R. J. Mathar_, Apr 03 2017

%F E.g.f.: x^3*(1 + x)/(2*(1 - x)^2). - _Ilya Gutkovskiy_, May 23 2017

%t Table[n!*(2*n-5)/2,{n,3,20}] (* _Harvey P. Dale_, Oct 10 2012 *)

%o (Magma) [Factorial(n)*(2*n-5)/2: n in [3..22]]; // _Vincenzo Librandi_, May 25 2017

%o (PARI) for(n=3,30, print1(n!*(2*n-5)/2, ", ")) \\ _G. C. Greubel_, Feb 16 2018

%K nonn,easy

%O 3,1

%A _N. J. A. Sloane_