login
A034850
Triangular array formed by taking every other term of Pascal's triangle.
2
1, 1, 2, 1, 3, 1, 6, 1, 5, 10, 1, 6, 20, 6, 1, 21, 35, 7, 1, 28, 70, 28, 1, 9, 84, 126, 36, 1, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 1, 66, 495, 924, 495, 66, 1, 13, 286, 1287, 1716, 715, 78, 1, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435
OFFSET
0,3
FORMULA
a(n) = A007318(2n) if both are regarded as integer sequences. - Michael Somos, Feb 11 2004
EXAMPLE
Triangle begins:
1;
1;
2;
1, 3;
1, 6, 1;
5, 10, 1;
6, 20, 6;
1, 21, 35, 7;
MATHEMATICA
Table[If[k < 0 || k > (Floor[n/4] + Floor[(n + 1)/4]), 0, Binomial[n, 2*k + Mod[Floor[(n + 1)/2], 2]]], {n, 0, 20}, {k, 0, (Floor[n/4] + Floor[(n + 1)/4])}] // Flatten (* G. C. Greubel, Feb 23 2018 *)
PROG
(PARI) {T(n, k) = if( k<0 || k>n\4 + (n+1)\4, 0, binomial(n, 2*k + (n+1)\2%2))}; /* Michael Somos, Feb 11 2004 */
CROSSREFS
Sequence in context: A377510 A084419 A119606 * A220377 A329696 A145969
KEYWORD
nonn,easy,tabf
STATUS
approved