login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of number of rooted trees with n >= 2 nodes and height h >= 1.
49

%I #58 Aug 30 2024 04:38:39

%S 1,1,1,1,2,1,1,4,3,1,1,6,8,4,1,1,10,18,13,5,1,1,14,38,36,19,6,1,1,21,

%T 76,93,61,26,7,1,1,29,147,225,180,94,34,8,1,1,41,277,528,498,308,136,

%U 43,9,1,1,55,509,1198,1323,941,487,188,53,10,1

%N Triangle of number of rooted trees with n >= 2 nodes and height h >= 1.

%H Alois P. Heinz, <a href="/A034781/b034781.txt">Rows n = 2..142, flattened</a>

%H Marko Riedel, <a href="http://math.stackexchange.com/questions/1801039/">Counting the number of rooted trees of a certain height</a>

%H Marko Riedel, <a href="/A034781/a034781_1.maple.txt">Maple code for sequence (OGF)</a>

%H J. Riordan, <a href="http://dx.doi.org/10.1147/rd.45.0473">Enumeration of trees by height and diameter</a>, IBM J. Res. Dev. 4 (1960), 473-478.

%H J. Riordan, <a href="/A007401/a007401_8.pdf">The enumeration of trees by height and diameter</a>, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)

%H Peter Steinbach, <a href="/A000055/a000055_10.pdf">Field Guide to Simple Graphs, Volume 3</a>, Part 10 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%F Reference gives recurrence.

%F T(n, k) = A375467(n, k) - A375467(n, k - 1). - _Peter Luschny_, Aug 30 2024

%e Triangle begins:

%e 1;

%e 1 1;

%e 1 2 1;

%e 1 4 3 1;

%e 1 6 8 4 1;

%e 1 10 18 13 5 1;

%e 1 14 38 36 19 6 1;

%e thus there are 10 trees with 7 nodes and height 2.

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,

%p add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))

%p end:

%p T:= (n, k)-> b((n-1)$2, k) -b((n-1)$2, k-1):

%p seq(seq(T(n, k), k=1..n-1), n=2..16); # _Alois P. Heinz_, Jul 31 2013

%t Drop[Map[Select[#, # > 0 &] &,

%t Transpose[

%t Prepend[Table[

%t f[n_] :=

%t Nest[CoefficientList[

%t Series[Product[1/(1 - x^i)^#[[i]], {i, 1, Length[#]}], {x,

%t 0, 10}], x] &, {1}, n]; f[m] - f[m - 1], {m, 2, 10}],

%t Prepend[Table[1, {10}], 0]]]], 1] // Grid (* _Geoffrey Critzer_, Aug 01 2013 *)

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1 || k<1, 0, Sum[Binomial[b[i-1, i-1, k-1]+j-1, j]*b[n-i*j, i-1, k], {j, 0, n/i}]]]; T[n_, k_] := b[n-1, n-1, k]-b[n-1, n-1, k-1]; Table[T[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* _Jean-François Alcover_, Feb 11 2014, after _Alois P. Heinz_ *)

%o (Python)

%o def A034781(n, k): return A375467(n, k) - A375467(n, k - 1)

%o for n in range(2, 10): print([A034781(n, k) for k in range(2, n + 1)])

%o # _Peter Luschny_, Aug 30 2024

%Y Columns h=2-10 give: A000065, A000235, A000299, A000342, A000393, A000418, A000429, A126085, A245068.

%Y T(2n,n) = A245102(n), T(2n+1,n) = A245103(n).

%Y Row sums give A000081.

%Y Cf. A001853, A227819, A375467.

%K tabl,nonn,easy,nice

%O 2,5

%A _N. J. A. Sloane_

%E More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 19 2003