login
A034752
Dirichlet convolution of 3^(n-1) with primes (with 1).
1
1, 5, 12, 38, 88, 281, 742, 2273, 6607, 19889, 59078, 177823, 531478, 1595861, 4783318, 14353514, 43046774, 129154229, 387420550, 1162301563, 3486786776, 10460471461, 31381059688, 94143541523, 282429537137, 847289672533, 2541865848284, 7625600677855
OFFSET
1,2
LINKS
MAPLE
dc:= proc(b, c) proc(n) option remember; add(
b(d)*c(n/d), d=numtheory[divisors](n)) end
end:
a:= dc(x-> 3^(x-1), y-> `if`(y=1, 1, ithprime(y-1))):
seq(a(n), n=1..33); # Alois P. Heinz, Nov 07 2021
MATHEMATICA
dc[b_, c_] := Module[{a}, a[n_] := a[n] = Sum[
b[d]*c[n/d], {d, Divisors[n]}]; a];
a = dc[3^(#-1)&, If[# == 1, 1, Prime[#-1]]&];
Table[a[n], {n, 1, 33}] (* Jean-François Alcover, May 21 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A359189 A297909 A220705 * A095310 A122299 A162269
KEYWORD
nonn
STATUS
approved