%I #31 Oct 03 2014 17:55:28
%S 0,1,2,2,3,3,3,3,4,5,6,6,7,7,7,7,8,9,10,10,11,11,11,11,12,13,14,14,15,
%T 15,15,15,16,17,18,18,19,19,19,19,20,21,22,22,23,23,23,23,24,25,26,26,
%U 27,27,27,27,28,29,30,30,31,31,31,31
%N Radon-Hurwitz numbers: log_2 of dimension of an irreducible R-module for Clifford algebra Cl_n.
%D H. Blaine Lawson, Jr. and M.-L. Michelsohn, Spin Geometry, Princeton, p. 33.
%D Pertti Lounesto, Clifford Algebras and Spinors, Cambridge, 1997, p. 226.
%F a(n+8) = a(n) + 4, n >= 0, a(0) = 0, a(1) = 1, a(2)= a(3) = 2, a(4) = a(5) = a(6) = a(7) =3.
%F G.f.: x*(1+ x + x^3 + x^7)/((1 - x)*(1 - x^8)). - _Wolfdieter Lang_, Oct 03 2014
%o (PARI) concat(0, Vec(x*(1+ x + x^3 + x^7)/((1 - x)*(1 - x^8)) + O(x^80))) \\ _Michel Marcus_, Oct 03 2014
%Y Cf. A003484, A034583-A034586.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_.