login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers using only the curved digits 0, 2, 3, 5, 6, 8 and 9.
6

%I #20 Nov 26 2014 20:16:15

%S 2,3,5,23,29,53,59,83,89,223,229,233,239,263,269,283,293,353,359,383,

%T 389,503,509,523,563,569,593,599,653,659,683,809,823,829,839,853,859,

%U 863,883,929,953,983,2003,2029,2039,2053,2063,2069,2083,2089,2099,2203

%N Prime numbers using only the curved digits 0, 2, 3, 5, 6, 8 and 9.

%C Intersection of A000040 and A028374. - _K. D. Bajpai_, Sep 07 2014

%H K. D. Bajpai, <a href="/A034470/b034470.txt">Table of n, a(n) for n = 1..10000</a>

%e From _K. D. Bajpai_, Sep 07 2014: (Start)

%e 29 is prime and is composed only of the curved digits 2 and 9.

%e 359 is prime and is composed only of the curved digits 3, 5 and 9.

%e (End)

%e 20235869 is the smallest instance using all curved digits. - _Michel Marcus_, Sep 07 2014

%p N:= 4: # to get all entries with at most N digits

%p S:= {0,2,3,5,6,8,9}:

%p T:= S:

%p for j from 2 to N do

%p T:= map(t -> seq(10*t+s,s=S),T);

%p od:

%p select(isprime,T);

%p # In Maple 11 and earlier, uncomment the next line:

%p # sort(convert(%,list)); # _Robert Israel_, Sep 07 2014

%t Select[Range[2222], PrimeQ[#] && Union[Join[IntegerDigits[#], {0, 2, 3, 5, 6, 8, 9}]] == {0, 2, 3, 5, 6, 8, 9} &] (* RGWv *)

%t Select[Prime[Range[500]], Intersection[IntegerDigits[#], {1, 4, 7}] == {} &] (* _K. D. Bajpai_, Sep 07 2014 *)

%Y Cf. A028374, A072960, A079652.

%K base,nonn

%O 1,1

%A _Robert G. Wilson v_, Jan 24 2003