login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034448 usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n). 326

%I #120 Sep 07 2023 04:16:30

%S 1,3,4,5,6,12,8,9,10,18,12,20,14,24,24,17,18,30,20,30,32,36,24,36,26,

%T 42,28,40,30,72,32,33,48,54,48,50,38,60,56,54,42,96,44,60,60,72,48,68,

%U 50,78,72,70,54,84,72,72,80,90,60,120,62,96,80,65,84,144,68,90,96,144

%N usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n).

%C Row sums of the triangle in A077610. - _Reinhard Zumkeller_, Feb 12 2002

%C Multiplicative with a(p^e) = p^e+1 for e>0. - _Franklin T. Adams-Watters_, Sep 11 2005

%H T. D. Noe, <a href="/A034448/b034448.txt">Table of n, a(n) for n = 1..10000</a>

%H Octavio A. Agustín-Aquino, <a href="http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1011">Prime injections and quasipolarities</a>, Matematiche 69 (2014) 159-168

%H Steven R. Finch, <a href="/A007947/a007947.pdf">Unitarism and Infinitarism</a>, February 25, 2004. [Cached copy, with permission of the author]

%H Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 50.

%H Carl Pomerance and Hee-Sung Yang, <a href="http://www.math.dartmouth.edu/~carlp/uupaper7.pdf">Variant of a theorem of Erdős on the sum-of-proper-divisors function</a>, Math. Comp., to appear (2014).

%H Tim Trudgian, <a href="https://doi.org/10.2298/PIM140617001T">The sum of the unitary divisor function</a>, Publications de l'Institut Mathématique 2015 Vol. 97, Issue 111, pp. 175-180.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/UnitaryDivisorFunction.html">Unitary Divisor Function</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Unitary_divisor">Unitary divisor</a>

%F If n = Product p_i^e_i, usigma(n) = Product (p_i^e_i + 1). - _Vladeta Jovovic_, Apr 19 2001

%F Dirichlet generating function: zeta(s)*zeta(s-1)/zeta(2s-1). - _Franklin T. Adams-Watters_, Sep 11 2005

%F Conjecture: a(n) = sigma(n^2/rad(n))/sigma(n/rad(n)), where sigma = A000203 and rad = A007947. - _Velin Yanev_, Aug 20 2017

%F This conjecture is easily verified since all the functions involved are multiplicative and proving it for prime powers is straightforward. - _Juan José Alba González_, Mar 19 2021

%F From _Amiram Eldar_, May 29 2020: (Start)

%F Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = n.

%F a(n) <= sigma(n) = A000203(n), with equality if and only if n is squarefree (A005117). (End)

%F Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*zeta(3)). - _Vaclav Kotesovec_, May 20 2021

%e Unitary divisors of 12 are 1, 3, 4, 12. Or, 12=3*2^2 hence usigma(12)=(3+1)*(2^2+1)=20.

%p A034448 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: RETURN(ans) end:

%p a := proc(n) local i; numtheory[divisors](n); select(d -> igcd(d,n/d)=1, %); add(i,i=%) end; # _Peter Luschny_, May 03 2009

%t usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Table[ usigma[n], {n, 71}] (* _Robert G. Wilson v_, Aug 28 2004 *)

%t Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 70}] (* _Michael De Vlieger_, Mar 01 2017 *)

%t usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Array[usigma, 100] (* faster since avoids generating divisors, _Giovanni Resta_, Apr 23 2017 *)

%o (PARI) A034448(n)=sumdiv(n,d,if(gcd(d,n/d)==1,d)) \\ _Rick L. Shepherd_

%o (PARI) A034448(n) = {my(f=factorint(n)); prod(k=1, #f[,2], f[k,1]^f[k,2]+1)} \\ _Andrew Lelechenko_, Apr 22 2014

%o (PARI) a(n)=sumdivmult(n,d,if(gcd(d,n/d)==1,d)) \\ _Charles R Greathouse IV_, Sep 09 2014

%o (Haskell) a034448 = sum . a077610_row -- _Reinhard Zumkeller_, Feb 12 2012

%o (Python 3.8+)

%o from math import prod

%o from sympy import factorint

%o def A034448(n): return prod(p**e+1 for p, e in factorint(n).items()) # _Chai Wah Wu_, Jun 20 2021

%Y Cf. A000203, A034444, A034460, A047994, A048250, A064000, A064609.

%Y Cf. A063937 (squares > 1).

%Y Cf. A188999, A301981, A301982.

%K nonn,easy,nice,mult

%O 1,2

%A _N. J. A. Sloane_, Dec 11 1999

%E More terms from _Erich Friedman_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 6 14:37 EDT 2024. Contains 372294 sequences. (Running on oeis4.)