login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Second term in extremal weight enumerator of doubly-even binary self-dual code of length 24n.
4

%I #20 Sep 21 2015 17:24:38

%S 1,2576,535095,18106704,369844880,6101289120,90184804281,

%T 1251098739072,16681003659936,216644275600560,2763033644875595,

%U 34784314216176096,433742858109499536,5369839142579042560

%N Second term in extremal weight enumerator of doubly-even binary self-dual code of length 24n.

%C The terms become negative at n=154 and so certainly by that point the extremal codes do not exist (see references).

%C Up to n = 250 the terms steadily increase in magnitude, but their sign changes from positive to negative at n = 154.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, see Theorem 13, p. 624.

%H N. J. A. Sloane, <a href="/A034415/b034415.txt">Table of n, a(n) for n = 0..250</a>

%H C. L. Mallows and N. J. A. Sloane, <a href="http://dx.doi.org/10.1016/S0019-9958(73)90273-8">An Upper Bound for Self-Dual Codes</a>, Information and Control, 22 (1973), 188-200.

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).

%H N. J. A. Sloane, <a href="http://neilsloane.com/doc/sg.txt">My favorite integer sequences</a>, in Sequences and their Applications (Proceedings of SETA '98).

%e At length 24, the weight enumerator (of the Golay code) is 1+759*x^8+2576*x^12+..., with leading coefficient 759 and second term 2576.

%p For Maple program see A034414.

%Y Cf. A034414 (leading coefficient), A001380, A034597, A034598.

%K sign

%O 0,2

%A _N. J. A. Sloane_.