OFFSET
0,2
COMMENTS
This is related to the solution of Problem 12150 of American Math. Monthly, vol. 126 (2019), page 946. - Stephen J. Herschkorn, Dec 14 2019
LINKS
Robert Israel, Table of n, a(n) for n = 0..238
FORMULA
a(n+2) = (3*n+5)*(n+2)*a(n+1) + (2*n+3)*(n+1)^2*a(n). - Robert Israel, Mar 14 2018
Empirical observation: a(n-1) = (2*n - 1)! / 4^(n-1) * Integral_{t=0..Pi/4} sec(t)^(2*n). - Stephen J. Herschkorn, Dec 14 2019
a(n) ~ sqrt(Pi) * 2^(n+2) * n^(2*n + 1/2) / exp(2*n). - Vaclav Kotesovec, Jan 02 2020
a(n) = (1/2^n)*Sum_{i=0..n} binomial(n,i) * (2*(n-i))! * (2*i)!. - Håvar Andre Melheim Salbu, May 22 2022
MAPLE
f:= gfun:-rectoproc({-(3*n+5)*(n+2)*a(n+1)+a(n+2)+(2*n+3)*(n+1)^2*(n+2)*a(n), a(0)=1, a(1)=2}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Mar 14 2018
MATHEMATICA
Table[FullSimplify[-(2*n + 1)! * Hypergeometric2F1[1, n + 3/2, n + 2, 2]/ ((n + 1)*2^n) - I*n!^2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
Table[FullSimplify[-I*Gamma[1 + n]^2 + I*2^(-1 - 2 n) * Beta[2, 1 + n, 1/2] * Gamma[2 + 2 n]], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
James R. FitzSimons (cherry(AT)neta.com)
EXTENSIONS
Edited by, and more terms from Robert Israel, Mar 14 2018
STATUS
approved