login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034405 Let f(x)=(Pi-2*arctan(1/(sqrt(x)*sqrt(x+2))))/(2*sqrt(x)*sqrt(x+2)), take (-1)^n*(n-th derivative from right at x=0) and multiply by A001147(n+1). 1
1, 2, 14, 216, 5976, 262800, 16945200, 1511395200, 178458940800, 26959810348800, 5071861902240000, 1162523770531200000, 318880083535896960000, 103120648805872938240000, 38820554918130896951040000, 16829499728777665273344000000, 8323409867177396185818624000000, 4657912954052653582049258496000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is related to the solution of Problem 12150 of American Math. Monthly, vol. 126 (2019), page 946. - Stephen J. Herschkorn, Dec 14 2019

LINKS

Robert Israel, Table of n, a(n) for n = 0..238

FORMULA

a(n+2) = (3*n+5)*(n+2)*a(n+1)+(2*n+3)*(n+1)^2*a(n). - Robert Israel, Mar 14 2018

Empirical observation: a(n-1) = (2*n - 1)! / 4^(n-1) * Integral_{t=0..Pi/4} sec(t)^(2*n). - Stephen J. Herschkorn, Dec 14 2019

a(n) ~ sqrt(Pi) * 2^(n+2) * n^(2*n + 1/2) / exp(2*n). - Vaclav Kotesovec, Jan 02 2020

MAPLE

f:= gfun:-rectoproc({-(3*n+5)*(n+2)*a(n+1)+a(n+2)+(2*n+3)*(n+1)^2*(n+2)*a(n), a(0)=1, a(1)=2}, a(n), remember):

map(f, [$0..30]); # Robert Israel, Mar 14 2018

MATHEMATICA

Table[FullSimplify[-(2*n + 1)! * Hypergeometric2F1[1, n + 3/2, n + 2, 2]/ ((n + 1)*2^n) - I*n!^2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)

Table[FullSimplify[-I*Gamma[1 + n]^2 + I*2^(-1 - 2 n) * Beta[2, 1 + n, 1/2] * Gamma[2 + 2 n]], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)

CROSSREFS

Cf. A001147.

Sequence in context: A271847 A136550 A068369 * A197210 A153668 A105749

Adjacent sequences:  A034402 A034403 A034404 * A034406 A034407 A034408

KEYWORD

nonn

AUTHOR

James R. FitzSimons (cherry(AT)neta.com)

EXTENSIONS

Edited by, and more terms from Robert Israel, Mar 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 27 15:27 EDT 2020. Contains 338035 sequences. (Running on oeis4.)