login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034405
Let f(x) = (Pi - 2*arctan(1/(sqrt(x)*sqrt(x+2))))/(2*sqrt(x)*sqrt(x+2)), take (-1)^n*(n-th derivative from right at x=0) and multiply by A001147(n+1).
1
1, 2, 14, 216, 5976, 262800, 16945200, 1511395200, 178458940800, 26959810348800, 5071861902240000, 1162523770531200000, 318880083535896960000, 103120648805872938240000, 38820554918130896951040000, 16829499728777665273344000000, 8323409867177396185818624000000, 4657912954052653582049258496000000
OFFSET
0,2
COMMENTS
This is related to the solution of Problem 12150 of American Math. Monthly, vol. 126 (2019), page 946. - Stephen J. Herschkorn, Dec 14 2019
LINKS
FORMULA
a(n+2) = (3*n+5)*(n+2)*a(n+1) + (2*n+3)*(n+1)^2*a(n). - Robert Israel, Mar 14 2018
Empirical observation: a(n-1) = (2*n - 1)! / 4^(n-1) * Integral_{t=0..Pi/4} sec(t)^(2*n). - Stephen J. Herschkorn, Dec 14 2019
a(n) ~ sqrt(Pi) * 2^(n+2) * n^(2*n + 1/2) / exp(2*n). - Vaclav Kotesovec, Jan 02 2020
a(n) = (1/2^n)*Sum_{i=0..n} binomial(n,i) * (2*(n-i))! * (2*i)!. - Håvar Andre Melheim Salbu, May 22 2022
MAPLE
f:= gfun:-rectoproc({-(3*n+5)*(n+2)*a(n+1)+a(n+2)+(2*n+3)*(n+1)^2*(n+2)*a(n), a(0)=1, a(1)=2}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Mar 14 2018
MATHEMATICA
Table[FullSimplify[-(2*n + 1)! * Hypergeometric2F1[1, n + 3/2, n + 2, 2]/ ((n + 1)*2^n) - I*n!^2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
Table[FullSimplify[-I*Gamma[1 + n]^2 + I*2^(-1 - 2 n) * Beta[2, 1 + n, 1/2] * Gamma[2 + 2 n]], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
CROSSREFS
Cf. A001147.
Sequence in context: A271847 A136550 A068369 * A372278 A197210 A153668
KEYWORD
nonn
AUTHOR
James R. FitzSimons (cherry(AT)neta.com)
EXTENSIONS
Edited by, and more terms from Robert Israel, Mar 14 2018
STATUS
approved