login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of completely replicable function 50a with a(0) = 1.
4

%I #55 Aug 06 2024 04:40:31

%S 1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,27,32,38,46,54,64,76,89,104,122,

%T 141,164,191,220,254,293,336,385,442,504,575,656,745,846,960,1086,

%U 1228,1388,1564,1762,1984,2228,2501,2806,3142,3516,3932,4390,4898,5462,6082

%N Coefficients of completely replicable function 50a with a(0) = 1.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%D F. Calegari, Review of "A first Course in modular forms" by F. Diamond and J. Shurman, Bull. Amer. Math. Soc., 43 (No. 3, 2006), 415-421. See p. 418

%H G. C. Greubel, <a href="/A034320/b034320.txt">Table of n, a(n) for n = -1..1000</a>

%H D. Alexander, C. Cummins, J. McKay and C. Simons, <a href="http://oeis.org/A007242/a007242_1.pdf">Completely Replicable Functions</a>, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.

%H I. Chen and N. Yui, <a href="http://www.math.sfu.ca/~ichen/pub.html">Singular values of Thompson series</a>. In Groups, difference sets and the Monster (Columbus, OH, 1993), pp. 255-326, Ohio State University Mathematics Research Institute Publications, 4, de Gruyter, Berlin, 1996.

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H H. D. Nguyen, D. Taggart, <a href="https://citeseerx.ist.psu.edu/pdf/8f2f36f22878c984775ed04368b8893879b99458">Mining the OEIS: Ten Experimental Conjectures</a>, 2013; Mentions this sequence.

%H H. D. Nguyen, D. Taggart, <a href="http://users.rowan.edu/~nguyen/papers/Mining%20the%20Online%20Encyclopedia%20of%20Integer%20Sequences.pdf">Mining the OEIS: Ten Experimental Conjectures</a>, 2013

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of Hauptmodul for Gamma_0(50)+50 in powers of q.

%F Expansion of q^(-1) * chi(-q^25) / chi(-q) in powers of q where chi() is a Ramanujan theta function. - _Michael Somos_, Jun 09 2007

%F Expansion of (eta(q^2) * eta(q^25)) / (eta(q) * eta(q^50)) in powers of q. - _Michael Somos_, Sep 20 2004

%F Euler transform of period 50 sequence [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...]. - _Michael Somos_, Sep 20 2004

%F G.f. is Fourier series of a weight 0 level 50 modular form. f(-1 / (50 t)) = f(t) where q = exp(2 Pi i t). - _Michael Somos_, Jun 09 2007

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*v + 2*u*w + 2*u*v^2*w + v*w^2 - v^2 - u^2*w^2. - _Michael Somos_, Jun 09 2007

%F G.f.: 1/x * (Product_{k>0} (1 + x^k) / (1 + x^(25*k))).

%F a(n) = A058703(n) unless n=0.

%F a(n) ~ exp(2*Pi*sqrt(2*n)/5) / (2^(3/4) * sqrt(5) * n^(3/4)). - _Vaclav Kotesovec_, Sep 06 2015

%e G.f. = q^-1 + 1 + q + 2*q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 5*q^6 + 6*q^7 + 8*q^8 + ...

%t a[ n_] := SeriesCoefficient[ q^-1 QPochhammer[q^25, q^50] / QPochhammer[q, q^2], {q, 0, n}]; (* _Michael Somos_, Jul 11 2011 *)

%t a[ n_] := SeriesCoefficient[ q^-1 Product[1 + q^k, {k, n + 1}] / Product[1 + q^k, {k, 25, n + 1, 25}], {q, 0, n}]; (* _Michael Somos_, Jul 11 2011 *)

%o (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = 1 + x * O(x^n); polcoeff( prod( k=1, n, 1 + x^k, A) / prod( k=1, n\25, 1 + x^(25*k), A),n))}; /* _Michael Somos_, Sep 20 2004 */

%o (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^25 + A) / (eta(x + A) * eta(x^50 + A)), n))}; /* _Michael Somos_, Sep 20 2004 */

%o (PARI) N=66; q='q+O('q^N); Vec( (eta(q^2)*eta(q^25))/(eta(q)*eta(q^50))/q ) \\ _Joerg Arndt_, Apr 09 2016

%Y Cf. A034321, A058703.

%K nonn

%O -1,4

%A _N. J. A. Sloane_