login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n+6,6)*(6*n+7)/7.
7

%I #30 Sep 08 2022 08:44:51

%S 1,13,76,300,930,2442,5676,12012,23595,43615,76648,129064,209508,

%T 329460,503880,751944,1097877,1571889,2211220,3061300,4177030,5624190,

%U 7480980,9839700,12808575,16513731,21101328,26739856,33622600,41970280

%N a(n) = binomial(n+6,6)*(6*n+7)/7.

%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

%H Vincenzo Librandi, <a href="/A034265/b034265.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).

%F G.f.: (1+5*x)/(1-x)^8.

%F a(0)=1, a(1)=13, a(2)=76, a(3)=300, a(4)=930, a(5)=2442, a(6)=5676, a(7)=12012, a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8). - _Harvey P. Dale_, Jul 29 2014

%p seq((6*n+7)*binomial(n+6,6)/7, n=0..30); # _G. C. Greubel_, Aug 28 2019

%t Accumulate[Table[(n+1)Binomial[n+5,5],{n,0,30}]] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {1,13,76,300,930,2442,5676, 12012}, 30] (* _Harvey P. Dale_, Jul 29 2014 *)

%t CoefficientList[Series[(1+5x)/(1-x)^8, {x,0,40}], x] (* _Vincenzo Librandi_, Jul 30 2014 *)

%o (Magma) [(6*n+7)*Binomial(n+6,6)/7: n in [0..40]]; // _Vincenzo Librandi_, Jul 30 2014

%o (PARI) a(n)=(6*n/7+1)*binomial(n+6,6) \\ _Charles R Greathouse IV_, Oct 07 2015

%o (Sage) [(6*n+7)*binomial(n+6,6)/7 for n in (0..30)] # _G. C. Greubel_, Aug 28 2019

%o (GAP) List([0..30], n-> (6*n+7)*Binomial(n+6,6)/7); # _G. C. Greubel_, Aug 28 2019

%Y a(n)=f(n, 5) where f is given in A034261.

%Y Partial sums of A027810.

%Y Cf. A093563 ((6, 1) Pascal, column m=7).

%Y Cf. similar sequences listed in A254142.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_

%E Corrected and extended by _N. J. A. Sloane_, Apr 21 2000