|
|
A034136
|
|
Number of partitions of n into distinct parts from [ 1, 6 ].
|
|
0
|
|
|
1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
The number of different ways to run up a staircase with 6 steps, taking steps of odd sizes (or taking steps of distinct sizes), where the order is not relevant and there is no other restriction on the number or the size of each step taken is the coefficient of x^6. - Mohammad K. Azarian, Aug 22 2010
|
|
REFERENCES
|
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501. - Mohammad K. Azarian, Aug 22 2010
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891). - Mohammad K. Azarian, Aug 22 2010
|
|
LINKS
|
Table of n, a(n) for n=0..80.
|
|
FORMULA
|
Expansion of (1+x)(1+x^2)(1+x^3)...(1+x^6).
|
|
CROSSREFS
|
Cf. A000009, A034137-A034150.
Sequence in context: A164531 A138161 A307483 * A189638 A097535 A060018
Adjacent sequences: A034133 A034134 A034135 * A034137 A034138 A034139
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|