Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Dec 09 2017 04:01:51
%S 2,3,8,18,41,87,176,343,643,1165,3503,3691,3888,4095,4311,4538,4776,
%T 5025,5285,5558,5844,6143,6455,6782,7125,7482,7856,8247,8656,9083,
%U 9529,9994,10481,10988,11518,12072,12649,13251,13879,14534,15217,15929,16672
%N a(0)=2; a(n) is the smallest k > a(n-1) such that the fractional part of k^(1/11) starts with n.
%F For n > 0, a(n) = ceiling((d + n/10^d)^11) where d = 1 + floor(log_10(n)). - _Jon E. Schoenfield_, Nov 28 2017
%e a(4) = 41 -> 41^(1/11) = 1.{4}01576...;
%e a(5) = 87 -> 87^(1/11) = 1.{5}0079001... and a(4)=41 < a(5)=87.
%e From _Jon E. Schoenfield_, Nov 28 2017: (Start)
%e n a(n) a(n)^(1/11)
%e -- ------ ---------------
%e 0 2 1.{0}6504108...
%e 1 3 1.{1}1612317...
%e 2 8 1.{2}1481404...
%e 3 18 1.{3}0051594...
%e 4 41 1.{4}0157620...
%e 5 87 1.{5}0079001...
%e 6 176 1.{6}0006459...
%e 7 343 1.{7}0012668...
%e 8 643 1.{8}0008041...
%e 9 1165 1.{9}0001444...
%e 10 3503 2.{10}001226...
%e 11 3691 2.{11}001635...
%e 12 3888 2.{12}001410...
%e ...
%e 99 170759 2.{99}000033...
%e 100 254085 3.{100}00025...
%e 101 254988 3.{101}00020... (End)
%t fps[n_,i_]:=Module[{c=RealDigits[Surd[n,11],10,10]},FromDigits[ Take[ Drop[ c[[1]],c[[2]]],IntegerLength[i]]]]; nxt[{i_,n_}]:={i+1,Module[ {x=n+1}, While[fps[x,i+1]!=i+1,x++];x]}; Transpose[NestList[nxt,{0,2},50]][[2]] (* _Harvey P. Dale_, Nov 14 2013 *)
%Y Cf. A034066, A034086.
%K nonn,base
%O 0,1
%A _Patrick De Geest_, Sep 15 1998
%E Name edited by _Jon E. Schoenfield_, Nov 28 2017