Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #66 Sep 05 2023 01:54:34
%S 1,1,2,3,7,13,35,88,303,1119,5479,32303,251135,2527712,33985853,
%T 611846940,14864650924,488222721992,21712049275198,1308300679611469,
%U 106897965189674291,11852113048215107822,1784730721403509209215,365323537513403184463273
%N Number of bipartite graphs with n nodes.
%C All bipartite graphs are perfect. - _Falk Hüffner_, Nov 27 2015
%C EULER transform of A005142 [1, 1, 1, 3, 5, 17, ...] is [1, 2, 3, 7, 13, ...]. - _Michael Somos_, May 13 2019
%D R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
%H Andrew Howroyd, <a href="/A033995/b033995.txt">Table of n, a(n) for n = 0..50</a>
%H CombOS - Combinatorial Object Server, <a href="http://combos.org/nauty">Generate graphs</a>.
%H P. Erdős, D. J. Kleitman, and B. L. Rothschild, <a href="https://users.renyi.hu/~p_erdos/1976-03.pdf">Asymptotic enumeration of k_n-free graphs</a>. In Colloquio Internazionale sulle Teorie Combinatorie, (Rome, 1973), Tomo II, Atti dei Convegni Lincei, No. 17, pp. 19-27. Accad. Naz. Lincei, Rome.
%H P. Hanlon, <a href="http://dx.doi.org/10.1016/0012-365X(79)90184-5">The enumeration of bipartite graphs</a>, Discrete Math. 28 (1979), 49-57.
%H S. Hougardy, <a href="http://www.or.uni-bonn.de/~hougardy/">Home Page</a>.
%H S. Hougardy, <a href="http://dx.doi.org/10.1016/j.disc.2006.05.021">Classes of perfect graphs</a>, Discr. Math. 306 (2006), 2529-2571.
%H Sage, <a href="http://www.sagemath.org/doc/reference/graphs/sage/graphs/graph_generators.html">Common Graphs (Graph Generators)</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BipartiteGraph.html">Bipartite Graph</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BicolorableGraph.html">Bicolorable Graph</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/n-ColorableGraph.html">n-Colorable Graph</a>.
%e For n=1: o; n=2: o o, o-o; n=3: o o o, o o-o, o-o-o; n=4: o o o o, o o o-o, o-o o-o, o o-o-o, o-o-o-o, K_{2,2}, K_{3,1}. - _Michael Somos_, May 13 2019
%t A005142 = Cases[Import["https://oeis.org/A005142/b005142.txt", "Table"], {_, _}][[All, 2]];
%t (* EulerTransform is defined in A005195 *)
%t EulerTransform[Rest @ A005142] (* _Jean-François Alcover_, Mar 18 2020 *)
%Y Row sums of A297877.
%Y The labeled version is A047864.
%Y Equals A076278(n) + 1.
%Y Cf. A005142 (connected).
%K nonn,nice
%O 0,3
%A Ronald C. Read
%E a(0)=1 prepended and terms a(21) and beyond from _Andrew Howroyd_, Sep 05 2018