login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), k >= 4.
3

%I #7 Sep 08 2022 08:44:51

%S 3,11,27,56,106,190,329,557,929,1534,2516,4108,6687,10863,17623,28564,

%T 46270,74922,121285,196305,317693,514106,831912,1346136,2178171,

%U 3524435,5702739,9227312,14930194,24157654,39088001

%N Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), k >= 4.

%H G. C. Greubel, <a href="/A033960/b033960.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-1,1).

%F a(n) = Fibonacci(n+8) - (18+5*n).

%F G.F.: (3+2*x)/((1-x-x^2)*(1-x)^2).

%t Table[Fibonacci[n+8] -5*n-18, {n,0,40}] (* _G. C. Greubel_, Jul 05 2019 *)

%o (PARI) vector(40, n, n--; fibonacci(n+8) -5*n-18) \\ _G. C. Greubel_, Jul 05 2019

%o (Magma) [Fibonacci(n+8) -5*n-18: n in [0..40]]; // _G. C. Greubel_, Jul 05 2019

%o (Sage) [fibonacci(n+8) -5*n-18 for n in (0..40)] # _G. C. Greubel_, Jul 05 2019

%o (GAP) List([0..40], n-> Fibonacci(n+8) -5*n-18) # _G. C. Greubel_, Jul 05 2019

%Y Cf. A000045, A001924, A001891, A033937.

%K easy,nonn

%O 0,1

%A _Wolfdieter Lang_