Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Apr 01 2022 09:13:09
%S 1,3,7,9,25,27,73,97,129,171,231,313,327,703,871,1161,2463,2919,3711,
%T 6171,10971,13255,17647,23529,26623,34239,35655,52527,77031,106239,
%U 142587,156159,216367,230631,410011,511935,626331,837799,1117065,1501353,1723519,2298025,3064033
%N In the '3x+1' problem, these values for the starting value set new records for number of steps to reach 1.
%C Only the 3x+1 steps, not the halving steps, are counted.
%D D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
%D G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.
%H Charles R Greathouse IV, <a href="/A033958/b033958.txt">Table of n, a(n) for n = 1..71</a>
%H Brian Hayes, <a href="https://www.jstor.org/stable/24969271">Computer Recreations: On the ups and downs of hailstone numbers</a>, Scientific American, 250 (No. 1, 1984), pp. 10-16.
%H <a href="/index/Go#GEB">Index entries for sequences from "Goedel, Escher, Bach"</a>
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F Positions of records in A006667. - _Sean A. Irvine_, Jul 22 2020
%t f[ nn_ ] := Module[ {c, n}, c = 0; n = nn; While[ n != 1, If[ Mod[ n, 2 ] == 0, n /= 2, n = 3*n + 1; c++ ] ]; Return[ c ] ] maxx = -1; For[ n = 1, n <= 10^8, n++, Module[ {val}, val = f[ n ]; If[ val > maxx, maxx = val; Print[ n, " ", val ] ] ] ] (* Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000 *)
%o (Haskell)
%o a033958 n = a033958_list !! (n-1)
%o -- For definition of a033958_list: see A033959.
%o -- _Reinhard Zumkeller_, Jan 08 2014
%Y Cf. A006884, A006885, A006877, A006878, A033492, A033959.
%K nonn,nice
%O 1,2
%A _N. J. A. Sloane_
%E More terms from _Jud McCranie_, Jan 26 2000
%E Corrected with Mathematica code by Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000
%E a(40)-a(43) from _Charles R Greathouse IV_, Oct 07 2013