login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of zeros in numbers 0 to 999..9 (n digits).
5

%I #59 Nov 22 2022 03:10:01

%S 1,10,190,2890,38890,488890,5888890,68888890,788888890,8888888890,

%T 98888888890,1088888888890,11888888888890,128888888888890,

%U 1388888888888890,14888888888888890,158888888888888890,1688888888888888890,17888888888888888890,188888888888888888890

%N Number of zeros in numbers 0 to 999..9 (n digits).

%C This sequence also gives the total count of digits of n below 10^n. In such counts it makes sense to omit 10^0 as we are interested in having ten digits under each power of 10. For each power of 10 the total number of digits 0-9 is always the total of zeros for the next power. For example, at 10^1 there is 1 of each numeral 0-9, total 10 digits. At 10^2, the number of zeros is 10, with 20 each for the other 9 numerals and so on. - _Enoch Haga_, May 13 2006

%C Also the position of 10^n in Champernowne's constant (A033307). See Sikora, p. 3. - _Robert G. Wilson v_, Jun 29 2014

%H Vincenzo Librandi, <a href="/A033714/b033714.txt">Table of n, a(n) for n = 1..100</a>

%H John K. Sikora, <a href="http://arxiv.org/abs/1210.1263">On the High Water Mark Convergents of Champernowne's Constant in Base Ten</a>, arXiv:1210.1263 [math.NT], 2012.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (21,-120,100).

%F a(n) = 10^(n-1)*n - (1/9)*10^n + 10/9. - _Robert Israel_, Jun 30 2014

%F G.f.: -x*(100*x^2-11*x+1) / ((x-1)*(10*x-1)^2). - _Colin Barker_, Jan 27 2015

%F From _Bernard Schott_, Nov 20 2022: (Start)

%F a(n) = A033713(n) + 1.

%F a(n+1) = a(n) + 9 * A053541(n). (End)

%t a[1] = 1; a[n_] := a[n] = 9*10^(n-2)*(n-1) + a[n-1]; Table[a[n], {n, 1, 17}] (* _Jean-François Alcover_, Jul 13 2012 *)

%t f[n_] := 1 + Sum[9 m*10^(m - 1), {m, n}]; Array[f, 18, 0] (* _Robert G. Wilson v_, Jun 29 2014 *)

%t LinearRecurrence[{21,-120,100},{1,10,190},20] (* _Harvey P. Dale_, Dec 03 2021 *)

%o (Magma) [(9*n*10^n-10*10^n+100)/90: n in [1..20]]: // _Vincenzo Librandi_, Jul 01 2014

%o (PARI) Vec(-x*(100*x^2-11*x+1)/((x-1)*(10*x-1)^2) + O(x^100)) \\ _Colin Barker_, Jan 27 2015

%Y Cf. A033713, A053541.

%Y Cf. A212704 (first differences).

%K nonn,base,nice,easy

%O 1,2

%A Olivier Gorin (gorin(AT)roazhon.inra.fr)

%E More terms from _Erich Friedman_