login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of zeros in numbers 1 to 999..9 (n digits).
10

%I #28 Sep 13 2023 11:05:14

%S 0,9,189,2889,38889,488889,5888889,68888889,788888889,8888888889,

%T 98888888889,1088888888889,11888888888889,128888888888889,

%U 1388888888888889,14888888888888889,158888888888888889,1688888888888888889,17888888888888888889,188888888888888888889,1988888888888888888889

%N Number of zeros in numbers 1 to 999..9 (n digits).

%C Also the first n places of 1, ..., n-digit numbers in the almost-natural numbers (A007376). - _Erich Friedman_.

%C a(n+1) is also the total number of digits in numbers from 1 through 999..9 (n digits). - _Jianing Song_, Apr 17 2022

%D M. Kraitchik, Mathematical Recreations. Dover, NY, 2nd ed., 1953, p. 49.

%H F. Calogero, <a href="https://doi.org/10.1007/BF02984865">Cool irrational numbers and their rather cool rational approximations, Math. Intell. 25 (4), 72-76 (2003).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (21,-120,100).

%F From _Stephen G Penrice_, Oct 01 2000: (Start)

%F a(n) = (1/9)*((n-1)*(10^n)-n*10^(n-1)+1).

%F G.f.: (9*x^2)/((1-x)(1-10x)^2). (End)

%F a(n) = Sum_{i=1..n} 9*i*10^(i-1).

%F a(1)=0, a(2)=9, a(3)=189, a(n)=21*a(n-1)-120*a(n-2)+100*a(n-3). - _Harvey P. Dale_, Jan 24 2012

%F a(n+1) = A058183(10^n-1) for n >= 1. - _Jianing Song_, Apr 17 2022

%F E.g.f.: exp(x)*(1 + exp(9*x)*(9*x - 1))/9. - _Stefano Spezia_, Sep 13 2023

%t Table[ Sum[9i*10^(i - 1), {i, 1, n}], {n, 0, 16}]

%t LinearRecurrence[{21,-120,100},{0,9,189},30] (* _Harvey P. Dale_, Jan 24 2012 *)

%o (PARI) a(n)=((n-1)*(10^n)-n*10^(n-1)+1)/9 \\ _Charles R Greathouse IV_, Feb 19 2017

%Y Cf. A033714, A058183.

%K nonn,base,nice,easy

%O 1,2

%A Olivier Gorin (gorin(AT)roazhon.inra.fr)

%E More terms from _Erich Friedman_.

%E a(18)-a(21) from _Stefano Spezia_, Sep 13 2023