login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033517 Number of matchings in graph C_{5} X P_{n}. 2
1, 11, 342, 9213, 253880, 6974078, 191668283, 5267252351, 144751259054, 3977955684680, 109319496849249, 3004244633718754, 82560623863809043, 2268875354470436757, 62351701497747569760, 1713507386797976483977, 47089453761312228669727, 1294080593187150583795074 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research reports, No 12, 1996, Department of Mathematics, Umea University.
Index entries for linear recurrences with constant coefficients, signature (25,76,-209,-159,119,40,-3,-1).
FORMULA
G.f.: (1 - 14*x - 9*x^2 + 36*x^3 + 21*x^4 - 2*x^5 - x^6)/(1 - 25*x - 76*x^2 + 209*x^3 + 159*x^4 - 119*x^5 - 40*x^6 + 3*x^7 + x^8). - Alois P. Heinz, Dec 09 2013
MAPLE
seq(coeff(series((1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1-25*x-76*x^2 +209*x^3+159*x^4-119*x^5-40*x^6+3*x^7+x^8), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
MATHEMATICA
LinearRecurrence[{25, 76, -209, -159, 119, 40, -3, -1}, {1, 11, 342, 9213, 253880, 6974078, 191668283, 5267252351}, 30] (* G. C. Greubel, Oct 26 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1 -25*x-76*x^2+209*x^3+159*x^4-119*x^5-40*x^6+3*x^7+x^8)) \\ G. C. Greubel, Oct 26 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1-25*x-76*x^2+209*x^3+159*x^4-119*x^5 -40*x^6+3*x^7+x^8) )); // G. C. Greubel, Oct 26 2019
(Sage)
def A077952_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-14*x-9*x^2+36*x^3+21*x^4-2*x^5-x^6)/(1-25*x-76*x^2 +209*x^3 +159*x^4-119*x^5-40*x^6+3*x^7+x^8)).list()
A077952_list(30) # G. C. Greubel, Oct 26 2019
(GAP) a:=[1, 11, 342, 9213, 253880, 6974078, 191668283, 5267252351];; for n in [9..30] do a[n]:=25*a[n-1]+76*a[n-2]-209*a[n-3]-159*a[n-4]+119*a[n-5]+40*a[n-6]=3*a[n-7]-a[n-8]; od; a; # G. C. Greubel, Oct 26 2019
CROSSREFS
Row 5 of A287428.
Sequence in context: A091537 A327943 A277348 * A279238 A192841 A158788
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 21:43 EST 2023. Contains 367616 sequences. (Running on oeis4.)