Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:44:51
%S 1,2,5,12,26,57,119,250,512,1050,2126,4309,8675,17469,35057,70364,
%T 140978,282468,565448,1131946,2264942,4532010,9066146,18136601,
%U 36277511,72563697,145136069,290289607,580596683,1161228423,2322491903,4645054170,9290178704,18580498386
%N a(n) = 2*a(n-1) + a(floor(n/2)), with a(1) = 1, a(2) = 2.
%H G. C. Greubel, <a href="/A033490/b033490.txt">Table of n, a(n) for n = 1..1000</a>
%p A033490 := proc(n) option remember; if n <= 2 then n else A033490(n-1)+A033490(round(2*(n-1)/2))+A033490(round((n-1)/2)); fi; end;
%t a[n_]:= a[n]= If[n<3, 2^(n-1), 2*a[n-1] + a[Floor[n/2]]]; Table[a[n], {n, 40}] (* _G. C. Greubel_, Oct 14 2019 *)
%o (PARI) a=vector(99,i,i);for(n=3,#a,a[n]=2*a[n-1]+a[n\2]);a \\ _Charles R Greathouse IV_, Nov 29 2011
%o (Magma) a:= func< n | n lt 3 select 2^(n-1) else 2*Self(n-1) + Self(Floor(n/2)) >;
%o [a(n): n in [1..40]]; // _G. C. Greubel_, Oct 14 2019
%o (Sage)
%o @CachedFunction
%o def a(n):
%o if (n<3): return 2^(n-1)
%o else: return 2*a(n-1) +a(floor(n/2))
%o [a(n) for n in (1..40)] # _G. C. Greubel_, Oct 14 2019
%o (GAP)
%o a:= function(n)
%o if n<3 then return 2^(n-1);
%o else return 2*a(n-1) + a(Int(n/2));
%o fi;
%o end;
%o List([1..40], n-> a(n) ); # _G. C. Greubel_, Oct 14 2019
%Y Cf. A033489, A033497.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_
%E Terms a(30) onward added by _G. C. Greubel_, Oct 14 2019