login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, a(n) = 2*a(n-1) + a([n/2]).
4

%I #10 Mar 30 2012 18:38:42

%S 1,3,7,17,37,81,169,355,727,1491,3019,6119,12319,24807,49783,99921,

%T 200197,401121,802969,1607429,3216349,6435717,12874453,25755025,

%U 51516169,103044657,206101633,412228073,824480953,1649011689

%N a(1) = 1, a(n) = 2*a(n-1) + a([n/2]).

%p A033489 := proc(n) option remember; if n = 1 then 1 else A033489(n-1)+A033489(round(2*(n-1)/2))+A033489(round((n-1)/2)); fi; end;

%o (PARI) a(n)=if(n<2,1,(2*a(n-1)+a(floor(n/2))))

%K nonn

%O 1,2

%A _N. J. A. Sloane_.

%E Better description and more terms from _Benoit Cloitre_, Jan 06 2004