login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of edges in 9-partite Turán graph of order n.
11

%I #44 Jul 07 2018 01:42:17

%S 0,0,1,3,6,10,15,21,28,36,44,53,63,74,86,99,113,128,144,160,177,195,

%T 214,234,255,277,300,324,348,373,399,426,454,483,513,544,576,608,641,

%U 675,710,746,783,821,860,900,940,981,1023,1066,1110,1155,1201,1248,1296

%N Number of edges in 9-partite Turán graph of order n.

%D Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

%H Vincenzo Librandi, <a href="/A033441/b033441.txt">Table of n, a(n) for n = 0..1000</a>

%H Christian Meyer, <a href="/A033441/a033441.pdf">On conjecture no. 76 arising from the OEIS</a>, preprint, 2004. [cached copy]

%H Ralf Stephan, <a href="https://arxiv.org/abs/math/0409509">Prove or disprove: 100 conjectures from the OEIS</a>, arXiv:math/0409509 [math.CO], 2004.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TuranGraph.html">Turán Graph</a> [From _Reinhard Zumkeller_, Nov 30 2009]

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a> [From _Reinhard Zumkeller_, Nov 30 2009]

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1).

%F G.f.: x*(1/(1-x) - 1/(1-x^9))/(1-x)^2. - _Ralf Stephan_, Mar 05 2004

%F a(n) = Sum_{k=0..n} A168182(k)*(n-k). - _Reinhard Zumkeller_, Nov 30 2009

%F G.f.: -x^2*(x+1)*(x^2+1)*(x^4+1)/((x-1)^3*(x^2+x+1)*(x^6+x^3+1)). - _Colin Barker_, Aug 09 2012

%F a(n) = Sum_{i=1..n} floor(8*i/9). - _Wesley Ivan Hurt_, Sep 12 2017

%t CoefficientList[Series[- x^2 (x + 1) (x^2 + 1) (x^4 + 1)/((x - 1)^3 (x^2 + x + 1) (x^6 + x^3 + 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 20 2013 *)

%t LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1},{0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 44},55] (* _Ray Chandler_, Aug 04 2015 *)

%Y Cf. A002620, A000212, A033436 - A033444. - _Reinhard Zumkeller_, Nov 30 2009

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_

%E More terms from _Vincenzo Librandi_, Oct 20 2013