Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 13 2017 03:12:34
%S 0,0,1,3,6,10,15,21,28,35,43,52,62,73,85,98,112,126,141,157,174,192,
%T 211,231,252,273,295,318,342,367,393,420,448,476,505,535,566,598,631,
%U 665,700,735,771,808,846,885,925
%N Number of edges in 8-partite Turán graph of order n.
%D Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.
%H Vincenzo Librandi, <a href="/A033440/b033440.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TuranGraph.html">Turán Graph</a> [_Reinhard Zumkeller_, Nov 30 2009]
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a> [_Reinhard Zumkeller_, Nov 30 2009]
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,0,1,-2,1).
%F a(n) = round( (7/16)*n(n-2) ) +0 or -1 depending on n: if there is k such 8k+4<=n<=8k+6 then a(n) = floor( (7/16)*n*(n-2)) otherwise a(n) = round( (7/16)*n(n-2)). E.g. because 8*2+4<=21<=8*2+6 a(n) = floor((7/16)*21*19) = floor(174, 5625)=174. - _Benoit Cloitre_, Jan 17 2002
%F a(n) = Sum_{k=0..n} A168181(k)*(n-k). [_Reinhard Zumkeller_, Nov 30 2009]
%F G.f.: -x^2*(x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)^3*(x+1)*(x^2+1)*(x^4+1)). [_Colin Barker_, Aug 09 2012]
%F a(n) = Sum_{i=1..n} floor(7*i/8). - _Wesley Ivan Hurt_, Sep 12 2017
%t CoefficientList[Series[- x^2 (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/((x - 1)^3 (x + 1) (x^2 + 1) (x^4 + 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 19 2013 *)
%t LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1},{0,0,1,3,6,10,15,21,28,35},50] (* _Harvey P. Dale_, Mar 23 2015 *)
%Y Cf. A002620, A000212, A033436, A033437, A033438, A033439, A033441, A033442, A033443, A033444. [_Reinhard Zumkeller_, Nov 30 2009]
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_