%I #246 Mar 04 2024 15:05:32
%S 1,1,2,1,5,5,1,9,21,14,1,14,56,84,42,1,20,120,300,330,132,1,27,225,
%T 825,1485,1287,429,1,35,385,1925,5005,7007,5005,1430,1,44,616,4004,
%U 14014,28028,32032,19448,4862,1,54,936,7644,34398,91728,148512,143208,75582,16796
%N Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.
%C T(n+3, k) is also the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's cluster algebra of finite type A_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of the triangle of Narayana numbers A001263. For example, x^2 + 5*x + 5 = y^2 + 3*y + 1. - _Paul Boddington_, Mar 07 2003
%C Number of standard Young tableaux of shape (k+1,k+1,1^(n-k-3)), where 1^(n-k-3) denotes a sequence of n-k-3 1's (see the Stanley reference).
%C Number of k-dimensional 'faces' of the n-dimensional associahedron (see Simion, p. 168). - _Mitch Harris_, Jan 16 2007
%C Mirror image of triangle A126216. - _Philippe Deléham_, Oct 19 2007
%C For relation to Lagrange inversion or series reversion and the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see A133437. - _Tom Copeland_, Sep 29 2008
%C Row generating polynomials 1/(n+1)*Jacobi_P(n,1,1,2*x+1). Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p. 60]. See A001263 for the corresponding array of h-vectors for associahedra of type A_n. See A063007 and A080721 for the f-vectors for associahedra of type B and type D respectively. - _Peter Bala_, Oct 28 2008
%C f-vectors of secondary polytopes for Grobner bases for optimization and integer programming (see De Loera et al. and Thomas). - _Tom Copeland_, Oct 11 2011
%C From Devadoss and O'Rourke's book: The Fulton-MacPherson compactification of the configuration space of n free particles on a line segment with a fixed particle at each end is the n-Dim Stasheff associahedron whose refined f-vector is given in A133437 which reduces to A033282. - _Tom Copeland_, Nov 29 2011
%C Diagonals of A132081 are rows of A033282. - _Tom Copeland_, May 08 2012
%C The general results on the convolution of the refined partition polynomials of A133437, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these polynomials. - _Tom Copeland_, Sep 20 2016
%C The signed triangle t(n, k) =(-1)^k* T(n+2, k-1), n >= 1, k = 1..n, seems to be obtainable from the partition array A111785 (in Abramowitz-Stegun order) by adding the entries corresponding to the partitions of n with the number of parts k. E.g., triangle t, row n=4: -1, (6+3) = 9, -21, 14. - _Wolfdieter Lang_, Mar 17 2017
%C The preceding conjecture by Lang is true. It is implicit in Copeland's 2011 comments in A086810 on the relations among a gf and its compositional inverse for that entry and inversion through A133437 (a differently normalized version of A111785), whose integer partitions are the same as those for A134685. (An inversion pair in Copeland's 2008 formulas below can also be used to prove the conjecture.) In addition, it follows from the relation between the inversion formula of A111785/A133437 and the enumeration of distinct faces of associahedra. See the MathOverflow link concernimg Loday and the Aguiar and Ardila reference in A133437 for proofs of the relations between the partition polynomials for inversion and enumeration of the distinct faces of the A_n associahedra, or Stasheff polytopes. - _Tom Copeland_, Dec 21 2017
%C The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)/(n!*(n+1)!) in the basis made of the binomial(x+i,i). - _F. Chapoton_, Oct 07 2022
%C Chapoton's observation above is correct: the precise expansion is (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)/ (n!*(n+1)!) = Sum_{k = 0..n-1} (-1)^k*T(n+2,n-k-1)*binomial(x+2*n-k,2*n-k), as can be verified using the WZ algorithm. For example, n = 4 gives (x+1)*(x+2)^2*(x+3)^2*(x+4)^2*(x+5)/(4!*5!) = 14*binomial(x+8,8) - 21*binomial(x+7,7) + 9*binomial(x+6,6) - binomial(x+5,5). - _Peter Bala_, Jun 24 2023
%D S. Devadoss and J. O'Rourke, Discrete and Computational Geometry, Princeton Univ. Press, 2011 (See p. 241.)
%D Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994. Exercise 7.50, pages 379, 573.
%D T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 5.8.
%H Vincenzo Librandi, <a href="/A033282/b033282.txt">Table of n, a(n) for n = 3..2000</a>
%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry3/barry93.html">Continued fractions and transformations of integer sequences</a>, JIS 12 (2009) 09.7.6.
%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Barry3/barry252.html">On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays</a>, Journal of Integer Sequences, 16 (2013), #13.5.6.
%H Paul Barry, <a href="https://arxiv.org/abs/1803.06408">Three Études on a sequence transformation pipeline</a>, arXiv:1803.06408 [math.CO], 2018.
%H Paul Barry, <a href="https://arxiv.org/abs/1805.02274">On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays</a>, arXiv:1805.02274 [math.CO], 2018.
%H Paul Barry, <a href="https://www.emis.de/journals/JIS/VOL22/Barry3/barry422.html">Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles</a>, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
%H Karin Baur and P. P. Martin, <a href="https://arxiv.org/abs/1601.05080">The fibres of the Scott map on polygon tilings are the flip equivalence classes</a>, arXiv:1601.05080 [math.CO], 2016.
%H D. Beckwith, <a href="http://www.jstor.org/stable/2589081">Legendre polynomials and polygon dissections?</a>, Amer. Math. Monthly, 105 (1998), 256-257.
%H W. Butler, A. Kalotay and N. J. A. Sloane, <a href="/A000108/a000108_3.pdf">Correspondence, 1974</a>
%H A. Cayley, <a href="http://plms.oxfordjournals.org/content/s1-22/1/237.extract">On the partitions of a polygon</a>, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff. (See p. 239.)
%H Adrian Celestino and Yannic Vargas, <a href="https://arxiv.org/abs/2311.07824">Schröder trees, antipode formulas and non-commutative probability</a>, arXiv:2311.07824 [math.CO], 2023.
%H F. Chapoton, <a href="http://www.mat.univie.ac.at/~slc/wpapers/s51chapoton.html">Enumerative properties of generalized associahedra</a>, Séminaire Lotharingien de Combinatoire, B51b (2004), 16 pp.
%H Johann Cigler, <a href="http://arxiv.org/abs/1501.04750">Some remarks and conjectures related to lattice paths in strips along the x-axis</a>, arXiv:1501.04750 [math.CO], 2015.
%H Manosij Ghosh Dastidar and Michael Wallner, <a href="https://arxiv.org/abs/2402.17849">Bijections and congruences involving lattice paths and integer compositions</a>, arXiv:2402.17849 [math.CO], 2024. See p. 16.
%H J. De Loera, J. Rambau, and F. Leal, <a href="http://personales.unican.es/santosf/MSRI03/chapter1.pdf">Triangulations of Point Sets</a> [From Tom Copeland Oct 11 2011]
%H S. Devadoss, <a href="http://www.ams.org/notices/200406/fea-devadoss.pdf">Combinatorial Equivalence of Real Moduli Spaces</a>, Notices Amer. Math. Soc. 51 (2004), no. 6, 620-628.
%H S. Devadoss and R. Read, <a href="https://arxiv.org/abs/math/0008145">Cellular structures determined by polygons and trees</a>, arXiv/0008145 [math.CO], 2000. [From Tom Copeland Nov 21 2017]
%H A. Dochtermann, <a href="http://arxiv.org/abs/1503.06243">Face rings of cycles, associahedra, and standard Young tableaux</a>, arXiv preprint arXiv:1503.06243 [math.CO], 2015.
%H Brian Drake, Ira M. Gessel, and Guoce Xin, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Gessel/gessel20.html">Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry,</a> J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7.
%H Cassandra Durell and Stefan Forcey, <a href="https://arxiv.org/abs/1905.09160">Level-1 Phylogenetic Networks and their Balanced Minimum Evolution Polytopes</a>, arXiv:1905.09160 [math.CO], 2019.
%H P. Flajolet and M. Noy, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00372-0">Analytic Combinatorics of Non-crossing Configurations</a>, Discrete Math., 204, 1999, 203-229.
%H S. Fomin and N. Reading, <a href="https://arxiv.org/abs/math/0505518">Root systems and generalized associahedra</a>, Lecture notes for IAS/Park-City 2004, arXiv:math/0505518 [math.CO], 2005-2008. [From _Peter Bala_, Oct 28 2008]
%H S. Fomin and A. Zelevinsky, <a href="http://arXiv.org/abs/math/0104151">Cluster algebras I: Foundations</a>, arXiv:math/0104151 [math.RT], 2001.
%H S. Fomin and A. Zelevinsky, <a href="http://dx.doi.org/10.1090/S0894-0347-01-00385-X">Cluster algebras I: Foundations</a>, J. Amer. Math. Soc. 15 (2002) no.2, 497-529.
%H S. Fomin and A. Zelevinsky, <a href="http://www.jstor.org/stable/3597238">Y-systems and generalized associahedra</a>, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.
%H Ivan Geffner, Marc Noy, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i2p3">Counting Outerplanar Maps</a>, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
%H Rijun Huang, Fei Teng, and Bo Feng, <a href="https://arxiv.org/abs/1801.08965">Permutation in the CHY-Formulation</a>, arXiv:1801.08965 [hep-th], 2018.
%H G. Kreweras, <a href="http://dx.doi.org/10.1016/0012-365X(72)90041-6">Sur les partitions non croisées d'un cycle</a>, (French) Discrete Math. 1 (1972), no. 4, 333--350. MR0309747 (46 #8852).
%H G. Kreweras, <a href="http://www.numdam.org/item?id=BURO_1973__20__3_0">Sur les hiérarchies de segments</a>, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
%H G. Kreweras, <a href="/A001844/a001844.pdf">Sur les hiérarchies de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
%H G. Kreweras, <a href="http://archive.numdam.org/article/MSH_1976__53__5_0.pdf">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30.
%H G. Kreweras, <a href="/A019538/a019538.pdf">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
%H T. Manneville and V. Pilaud, <a href="http://arxiv.org/abs/1501.07152">Compatibility fans for graphical nested complexes</a>, arXiv:1501.07152 [math.CO], 2015.
%H Sebastian Mizera, <a href="https://doi.org/10.1007/JHEP08(2017)097">Combinatorics and topology of Kawai-Lewellen-Tye relations</a> J. High Energy Phys. 2017, No. 8, Paper No. 97, 54 p. (2017).
%H J.-C. Novelli and J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv:1403.5962 [math.CO], 2014.
%H Vincent Pilaud, <a href="http://arxiv.org/abs/1505.07665">Brick polytopes, lattice quotients, and Hopf algebras</a>, arXiv:1505.07665 [math.CO], 2015.
%H Vincent Pilaud and V. Pons, <a href="http://arxiv.org/abs/1606.09643">Permutrees</a>, arXiv:1606.09643 [math.CO], 2016-2017.
%H R. C. Read, <a href="http://dx.doi.org/10.1007/BF03031688">On general dissections of a polygon</a>, Aequat. Math. 18 (1978), 370-388.
%H R. Simion, <a href="http://dx.doi.org/10.1006/aama.1996.0505">Convex Polytopes and Enumeration</a>, Adv. in Appl. Math. 18 (1997) pp. 149-180.
%H R. P. Stanley, <a href="http://dx.doi.org/10.1006/jcta.1996.0099">Polygon dissections and standard Young tableaux</a>, J. Comb. Theory, Ser. A, 76, 175-177, 1996.
%H R. Thomas, <a href="http://www.cis.upenn.edu/~cis610/ThomasLGC.pdf">Lectures in Geometric Combinatorics</a> [_Tom Copeland_, Oct 11 2011]
%F G.f. G = G(t, z) satisfies (1+t)*G^2 - z*(1-z-2*t*z)*G + t*z^4 = 0.
%F T(n, k) = binomial(n-3, k)*binomial(n+k-1, k)/(k+1) for n >= 3, 0 <= k <= n-3.
%F From _Tom Copeland_, Nov 03 2008: (Start)
%F Two g.f.s (f1 and f2) for A033282 and their inverses (x1 and x2) can be derived from the Drake and Barry references.
%F 1. a: f1(x,t) = y = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/[2x (t+1)] = t x + (t + 2 t^2) x^2 + (t + 5 t^2 + 5 t^3) x^3 + ...
%F b: x1 = y/[t + (2t+1)y + (t+1)y^2] = y {1/[t/(t+1) + y] - 1/(1+y)} = (y/t) - (1+2t)(y/t)^2 + (1+ 3t + 3t^2)(y/t)^3 +...
%F 2. a: f2(x,t) = y = {1 - x - sqrt[(1-x)^2 - 4xt]}/[2(t+1)] = (t/(t+1)) x + t x^2 + (t + 2 t^2) x^3 + (t + 5 t^2 + 5 t^3) x^4 + ...
%F b: x2 = y(t+1) [1- y(t+1)]/[t + y(t+1)] = (t+1) (y/t) - (t+1)^3 (y/t)^2 + (t+1)^4 (y/t)^3 + ...
%F c: y/x2(y,t) = [t/(t+1) + y] / [1- y(t+1)] = t/(t+1) + (1+t) y + (1+t)^2 y^2 + (1+t)^3 y^3 + ...
%F x2(y,t) can be used along with the Lagrange inversion for an o.g.f. (A133437) to generate A033282 and show that A133437 is a refinement of A033282, i.e., a refinement of the f-polynomials of the associahedra, the Stasheff polytopes.
%F y/x2(y,t) can be used along with the indirect Lagrange inversion (A134264) to generate A033282 and show that A134264 is a refinement of A001263, i.e., a refinement of the h-polynomials of the associahedra.
%F f1[x,t](t+1) gives a generator for A088617.
%F f1[xt,1/t](t+1) gives a generator for A060693, with inverse y/[1 + t + (2+t) y + y^2].
%F f1[x(t-1),1/(t-1)]t gives a generator for A001263, with inverse y/[t + (1+t) y + y^2].
%F The unsigned coefficients of x1(y t,t) are A074909, reverse rows of A135278. (End)
%F G.f.: 1/(1-x*y-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-.... (continued fraction). - _Paul Barry_, Feb 06 2009
%F Let h(t) = (1-t)^2/(1+(u-1)*(1-t)^2) = 1/(u + 2*t + 3*t^2 + 4*t^3 + ...), then a signed (n-1)-th row polynomial of A033282 is given by u^(2n-1)*(1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=2. The power series expansion of h(t) is related to A181289 (cf. A086810). - _Tom Copeland_, Sep 06 2011
%F With a different offset, the row polynomials equal 1/(1 + x)*Integral_{0..x} R(n,t) dt, where R(n,t) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k,k)*t^k are the row polynomials of A063007. - _Peter Bala_, Jun 23 2016
%F n-th row polynomial = ( LegendreP(n-1,2*x + 1) - LegendreP(n-3,2*x + 1) )/((4*n - 6)*x*(x + 1)), n >= 3. - _Peter Bala_, Feb 22 2017
%F n*T(n+1, k) = (4n-6)*T(n, k-1) + (2n-3)*T(n, k) - (n-3)*T(n-1, k) for n >= 4. - _Fang Lixing_, May 07 2019
%e The triangle T(n, k) begins:
%e n\k 0 1 2 3 4 5 6 7 8 9
%e 3: 1
%e 4: 1 2
%e 5: 1 5 5
%e 6: 1 9 21 14
%e 7: 1 14 56 84 42
%e 8: 1 20 120 300 330 132
%e 9: 1 27 225 825 1485 1287 429
%e 10: 1 35 385 1925 5005 7007 5005 1430
%e 11: 1 44 616 4004 14014 28028 32032 19448 4862
%e 12: 1 54 936 7644 34398 91728 148512 143208 75582 16796
%e ... reformatted. - _Wolfdieter Lang_, Mar 17 2017
%p T:=(n,k)->binomial(n-3,k)*binomial(n+k-1,k)/(k+1): seq(seq(T(n,k),k=0..n-3),n=3..12); # _Muniru A Asiru_, Nov 24 2018
%t t[n_, k_] = Binomial[n-3, k]*Binomial[n+k-1, k]/(k+1);
%t Flatten[Table[t[n, k], {n, 3, 12}, {k, 0, n-3}]][[1 ;; 52]] (* _Jean-François Alcover_, Jun 16 2011 *)
%o (PARI) Q=(1+z-(1-(4*w+2+O(w^20))*z+z^2+O(z^20))^(1/2))/(2*(1+w)*z);for(n=3,12,for(m=1,n-2,print1(polcoef(polcoef(Q,n-2,z),m,w),", "))) \\ _Hugo Pfoertner_, Nov 19 2018
%o (PARI) for(n=3,12, for(k=0,n-3, print1(binomial(n-3,k)*binomial(n+k-1,k)/(k+1), ", "))) \\ _G. C. Greubel_, Nov 19 2018
%o (Magma) [[Binomial(n-3, k)*Binomial(n+k-1, k)/(k+1): k in [0..(n-3)]]: n in [3..12]]; // _G. C. Greubel_, Nov 19 2018
%o (Sage) [[ binomial(n-3,k)*binomial(n+k-1,k)/(k+1) for k in (0..(n-3))] for n in (3..12)] # _G. C. Greubel_, Nov 19 2018
%Y Cf. diagonals: A000012, A000096, A033275, A033276, A033277, A033278, A033279; A000108, A002054, A002055, A002056, A007160, A033280, A033281; row sums: A001003 (Schroeder numbers, first term omitted). See A086810 for another version.
%Y A007160 is a diagonal. Cf. A001263.
%Y With leading zero: A086810.
%Y Cf. A019538 'faces' of the permutohedron.
%Y Cf. A063007 (f-vectors type B associahedra), A080721 (f-vectors type D associahedra), A126216 (mirror image).
%Y Cf. A248727 for a relation to f-polynomials of simplices.
%Y Cf. A111785 (contracted partition array, unsigned; see a comment above).
%Y Antidiagonal sums give A005043. - _Jordan Tirrell_, Jun 01 2017
%K nonn,tabl,easy
%O 3,3
%A _N. J. A. Sloane_
%E Missing factor of 2 for expansions of f1 and f2 added by _Tom Copeland_, Apr 12 2009