Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Jun 29 2022 13:40:29
%S 2,3,5,7,11,19,41,61,89,101,109,149,181,401,409,449,491,499,601,691,
%T 809,881,991,1009,1049,1069,1481,1609,1669,1699,1801,4001,4049,4481,
%U 4649,4801,4909,4969,6091,6469,6481,6869,6949,8009,8069,8081,8609,8669,8681
%N Primes that do not contain any other prime as a proper substring.
%C If there is more than one digit, all digits must be nonprime numbers.
%C A179335(n) = prime(n) iff prime(n) is in this sequence. For n > 4, prime(n) is in this sequence iff A109066(n) = 0. - _Reinhard Zumkeller_, Jul 11 2010, corrected by _M. F. Hasler_, Aug 27 2012
%C A079066(n) = 0 iff prime(n) is in this sequence. [Corrected by _M. F. Hasler_, Aug 27 2012]
%C What are the asymptotics of this sequence? - _Charles R Greathouse IV_, Aug 27 2012
%H Michael S. Branicky, <a href="/A033274/b033274.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Zak Seidov)
%e 149 is a term as 1, 4, 9, 14, 49 are all nonprimes.
%e 199 is not a term as 19 is a prime.
%t f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 1100, f@# == 1 &] (* _Robert G. Wilson v_, Aug 01 2010 *)
%o (Haskell)
%o import Data.List (elemIndices)
%o a033274 n = a033274_list !! (n-1)
%o a033274_list = map (a000040 . (+ 1)) $ elemIndices 0 a079066_list
%o -- _Reinhard Zumkeller_, Jul 19 2011
%o (Python)
%o from sympy import isprime
%o def ok(n):
%o if n in {2, 3, 5, 7}: return True
%o s = str(n)
%o if set(s) & {"2", "3", "5", "7"} or not isprime(n): return False
%o ss2 = set(s[i:i+l] for i in range(len(s)-1) for l in range(2, len(s)))
%o return not any(isprime(int(ss)) for ss in ss2)
%o print([k for k in range(9000) if ok(k)]) # _Michael S. Branicky_, Jun 29 2022
%Y Cf. A089768, A089770, A039996, A079397, A033274, A034844, A179909-A179919.
%K base,nonn
%O 1,1
%A _Michael Kleber_
%E Edited by _N. J. A. Sloane_ at the suggestion of Luca Colucci, Apr 03 2008