Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:44:51
%S 11,19,41,59,89,131,139,179,211,241,251,281,331,379,401,409,419,449,
%T 491,499,521,569,571,601,619,641,659,691,739,761,769,809,811,859,881,
%U 929,971,1009,1019,1049,1051,1091,1129,1171,1201,1249,1259,1289,1291,1321,1361,1409,1451,1459,1481
%N Primes of the form x^2 + 10*y^2.
%D David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 36.
%H Vincenzo Librandi and Ray Chandler, <a href="/A033201/b033201.txt">Table of n, a(n) for n = 1..10000</a> [First 2000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F Same as primes congruent to 1, 9, 11, or 19 mod 40. See, e.g., Cox, p. 36.
%F a(n) ~ 4n log n. - _Charles R Greathouse IV_, Nov 09 2012
%t Clear[f,lst,p,x,y]; f[x_,y_]:=x^2+10*y^2; lst={};Do[Do[p=f[x,y];If[PrimeQ[p]&&p<7212,AppendTo[lst,p]],{y,0,6!}],{x,0,6!}];Take[Union[lst],222] (* _Vladimir Joseph Stephan Orlovsky_, Aug 04 2009 *)
%t QuadPrimes2[1, 0, 10, 10000] (* see A106856 *)
%o (PARI) select(n->vecsearch([1,9,11,19],n%40), primes(100)) \\ _Charles R Greathouse IV_, Nov 09 2012
%o (Magma) [p: p in PrimesUpTo(1500) | NormEquation(10,p) eq true]; // _Bruno Berselli_, Jul 03 2016
%Y Cf. A139643.
%Y Primes in A020673.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_