login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Absolute Euler pseudoprimes: odd composite numbers n such that a^((n-1)/2) == +-1 (mod n) for every a coprime to n.
10

%I #82 Sep 03 2024 01:16:37

%S 1729,2465,15841,41041,46657,75361,162401,172081,399001,449065,488881,

%T 530881,656601,670033,838201,997633,1050985,1615681,1773289,1857241,

%U 2113921,2433601,2455921,2704801,3057601,3224065,3581761,3664585,3828001,4463641,4903921

%N Absolute Euler pseudoprimes: odd composite numbers n such that a^((n-1)/2) == +-1 (mod n) for every a coprime to n.

%C These numbers n have the property that, for each prime divisor p, p-1 divides (n-1)/2. E.g., 2465 = 5*17*29; 1232/4 = 308; 1232/16 = 77; 1232/28 = 44. - _Karsten Meyer_, Nov 08 2005

%C All these numbers are Carmichael numbers (A002997). - _Daniel Lignon_, Sep 12 2015

%C These are odd composite numbers n such that b^((n-1)/2) == 1 (mod n) for every base b that is a quadratic residue modulo n and coprime to n. There are no odd composite numbers n such that b^((n-1)/2) == -1 (mod n) for every base b that is a quadratic non-residue modulo n and coprime to n. Note: the absolute Euler-Jacobi pseudoprimes do not exist. Theorem: if an absolute Euler pseudoprime n is a Proth number, then b^((n-1)/2) == 1 for every b coprime to n; by Proth's theorem. Such numbers are 1729, 8355841, 40280065, 53282340865, ...; for example, 1729 = 27*2^6 + 1 with 27 < 2^6. However, it seems that all absolute Euler pseudoprimes n satisfy the stronger congruence b^((n-1)/2) == 1 (mod n) for every b coprime to n, as evidenced by the modified Korselt's criterion (see the first comment). It should be noted that these are odd numbers n such that Carmichael's lambda(n) divides (n-1)/2. Also, these are odd numbers n > 1 coprime to Sum_{k=1..n-1} k^{(n-1)/2}. - _Amiram Eldar_ and _Thomas Ordowski_, Apr 29 2019

%C Carmichael numbers k such that (p-1)|(k-1)/2 for each prime p|k. These are odd composite numbers k with half (the maximal possible fraction) of the numbers 1 <= b < k coprime to k that are bases in which k is an Euler-Jacobi pseudoprime, i.e. A329726((k-1)/2)/phi(k) = 1/2. - _Amiram Eldar_, Nov 20 2019

%C By _Karsten Meyer_'s and _Amiram Eldar_'s comment, this sequence is numbers k > 1 such that 2*psi(k) | (k-1), where psi = A002322. This means that if k is a term in this sequence, then we actually have a^((k-1)/2) == 1 (mod k) for every a coprime to k. - _Jianing Song_, Sep 03 2024

%H Daniel Lignon and Dana Jacobsen, <a href="/A033181/b033181.txt">Table of n, a(n) for n = 1..10000</a> (first 124 terms from Daniel Lignon)

%H Lorenzo Di Biagio, <a href="https://www.emis.de/journals/INTEGERS/papers/a7self/a7self.Abstract.html">Euler Pseudoprimes for Half of the Bases</a>, Integers, Vol. 12, No. 6 (2012), pp. 1231-1237, <a href="https://arxiv.org/abs/1109.3596">arXiv preprint</a>, arXiv:1109.3596 [math.NT] (2011).

%H Math Help Forum, <a href="http://mathhelpforum.com/number-theory/102196-how-many-absolute-euler-pseudoprimes-less-than-million.html">how many absolute euler pseudoprimes less than a million</a>, Sep 2009.

%H Louis Monier, <a href="https://doi.org/10.1016/0304-3975(80)90007-9">Evaluation and comparison of two efficient primality testing algorithms</a>, Theoretical Computer Science, Vol. 11 (1980), pp. 97-108.

%H <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>

%F a(n) == 1 (mod 4). - _Thomas Ordowski_, May 02 2019

%p filter:= proc(n)

%p local q;

%p if isprime(n) then return false fi;

%p if 2 &^ (n-1) mod n <> 1 then return false fi;

%p if not numtheory:-issqrfree(n) then return false fi;

%p for q in numtheory:-factorset(n) do

%p if (n-1)/2 mod (q-1) <> 0 then return false fi

%p od:

%p true;

%p end proc:

%p select(filter, [seq(i,i=3..10^7,2)]); # _Robert Israel_, Nov 24 2015

%t absEulerpspQ[n_Integer?PrimeQ]:=False;

%t absEulerpspQ[n_Integer?EvenQ]:=False;

%t absEulerpspQ[n_Integer?OddQ]:=Module[{a=2},

%t While[a<n&&(GCD[a,n]!=1||!Unequal[PowerMod[a,(n-1)/2,n],1,n-1]),a++];

%t (a==n)];

%t Select[Range[1,1000000,2],absEulerpspQ] (* _Daniel Lignon_, Sep 09 2015 *)

%t aQ[n_] := Module[{f = FactorInteger[n], p},p=f[[;;,1]]; Length[p] > 1 && Max[f[[;;,2]]]==1 && AllTrue[p, Divisible[(n-1)/2, #-1] &]];Select[Range[3, 2*10^5], aQ] (* _Amiram Eldar_, Nov 20 2019 *)

%o (Perl) use ntheory ":all"; my $n; foroddcomposites { say if is_carmichael($_) && vecall { (($n-1)>>1) % ($_-1) == 0 } factor($n=$_); } 1e6; # _Dana Jacobsen_, Dec 27 2015

%Y Cf. A002997, A006970, A047713, A080075, A329726.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Dec 11 1999

%E "Absolute Euler pseudoprimes" added to name by _Daniel Lignon_, Sep 09 2015

%E Definition edited by _Thomas Ordowski_, Apr 29 2019