login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033146
Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,0.
1
1, 10, 100, 1001, 10010, 100100, 1001001, 10010010, 100100100, 1001001001, 10010010010, 100100100100, 1001001001001, 10010010010010, 100100100100100, 1001001001001001, 10010010010010010, 100100100100100100, 1001001001001001001, 10010010010010010010
OFFSET
1,2
FORMULA
From Paul Barry, Apr 16 2005: (Start)
G.f.: 1/((1-x^3)*(1-10*x)).
a(n) = 10*a(n-1) + a(n-3) - 10*a(n-4).
a(n) = Sum_{k=0..floor(n/3)} 10^(n-3k), with offset 0.
a(n) = Sum_{k=0..n} 10^k*(cos(2*Pi*(n-k)/3 + Pi/3)/3 + sqrt(3)*sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3)), with offset 0. (End)
a(n) = round( (100/999)*10^n ). - Tani Akinari, Jul 15 2014
MATHEMATICA
With[{c = PadLeft[{}, 21, {1, 0, 0}]}, Table[FromDigits[Take[c, n]], {n, 20}]] (* Harvey P. Dale, Oct 03 2011 *)
PROG
(Python) print([100*10**n//999 for n in range(1, 50)]) # Karl V. Keller, Jr., Oct 05 2021
CROSSREFS
Sequence in context: A283013 A283057 A283079 * A282907 A281730 A282954
KEYWORD
nonn,base,easy
STATUS
approved